Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indifundif Structured version   Visualization version   GIF version

Theorem indifundif 30981
Description: A remarkable equation with sets. (Contributed by Thierry Arnoux, 18-May-2020.)
Assertion
Ref Expression
indifundif (((𝐴𝐵) ∖ 𝐶) ∪ (𝐴𝐵)) = (𝐴 ∖ (𝐵𝐶))

Proof of Theorem indifundif
StepHypRef Expression
1 difindi 4225 . 2 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
2 difundir 4224 . . . . 5 (((𝐴𝐵) ∪ (𝐴𝐵)) ∖ 𝐶) = (((𝐴𝐵) ∖ 𝐶) ∪ ((𝐴𝐵) ∖ 𝐶))
3 inundif 4422 . . . . . 6 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
43difeq1i 4063 . . . . 5 (((𝐴𝐵) ∪ (𝐴𝐵)) ∖ 𝐶) = (𝐴𝐶)
5 uncom 4097 . . . . 5 (((𝐴𝐵) ∖ 𝐶) ∪ ((𝐴𝐵) ∖ 𝐶)) = (((𝐴𝐵) ∖ 𝐶) ∪ ((𝐴𝐵) ∖ 𝐶))
62, 4, 53eqtr3i 2773 . . . 4 (𝐴𝐶) = (((𝐴𝐵) ∖ 𝐶) ∪ ((𝐴𝐵) ∖ 𝐶))
76uneq2i 4104 . . 3 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴𝐵) ∪ (((𝐴𝐵) ∖ 𝐶) ∪ ((𝐴𝐵) ∖ 𝐶)))
8 unass 4110 . . 3 (((𝐴𝐵) ∪ ((𝐴𝐵) ∖ 𝐶)) ∪ ((𝐴𝐵) ∖ 𝐶)) = ((𝐴𝐵) ∪ (((𝐴𝐵) ∖ 𝐶) ∪ ((𝐴𝐵) ∖ 𝐶)))
9 undifabs 4421 . . . 4 ((𝐴𝐵) ∪ ((𝐴𝐵) ∖ 𝐶)) = (𝐴𝐵)
109uneq1i 4103 . . 3 (((𝐴𝐵) ∪ ((𝐴𝐵) ∖ 𝐶)) ∪ ((𝐴𝐵) ∖ 𝐶)) = ((𝐴𝐵) ∪ ((𝐴𝐵) ∖ 𝐶))
117, 8, 103eqtr2i 2771 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴𝐵) ∪ ((𝐴𝐵) ∖ 𝐶))
12 uncom 4097 . 2 ((𝐴𝐵) ∪ ((𝐴𝐵) ∖ 𝐶)) = (((𝐴𝐵) ∖ 𝐶) ∪ (𝐴𝐵))
131, 11, 123eqtrri 2770 1 (((𝐴𝐵) ∖ 𝐶) ∪ (𝐴𝐵)) = (𝐴 ∖ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3893  cun 3894  cin 3895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3405  df-v 3443  df-dif 3899  df-un 3901  df-in 3903
This theorem is referenced by:  inelcarsg  32384
  Copyright terms: Public domain W3C validator