Proof of Theorem indifundif
| Step | Hyp | Ref
| Expression |
| 1 | | difindi 4267 |
. 2
⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) |
| 2 | | difundir 4266 |
. . . . 5
⊢ (((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ∖ 𝐶) = (((𝐴 ∩ 𝐵) ∖ 𝐶) ∪ ((𝐴 ∖ 𝐵) ∖ 𝐶)) |
| 3 | | inundif 4454 |
. . . . . 6
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
| 4 | 3 | difeq1i 4097 |
. . . . 5
⊢ (((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ∖ 𝐶) = (𝐴 ∖ 𝐶) |
| 5 | | uncom 4133 |
. . . . 5
⊢ (((𝐴 ∩ 𝐵) ∖ 𝐶) ∪ ((𝐴 ∖ 𝐵) ∖ 𝐶)) = (((𝐴 ∖ 𝐵) ∖ 𝐶) ∪ ((𝐴 ∩ 𝐵) ∖ 𝐶)) |
| 6 | 2, 4, 5 | 3eqtr3i 2766 |
. . . 4
⊢ (𝐴 ∖ 𝐶) = (((𝐴 ∖ 𝐵) ∖ 𝐶) ∪ ((𝐴 ∩ 𝐵) ∖ 𝐶)) |
| 7 | 6 | uneq2i 4140 |
. . 3
⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (((𝐴 ∖ 𝐵) ∖ 𝐶) ∪ ((𝐴 ∩ 𝐵) ∖ 𝐶))) |
| 8 | | unass 4147 |
. . 3
⊢ (((𝐴 ∖ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∖ 𝐶)) ∪ ((𝐴 ∩ 𝐵) ∖ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (((𝐴 ∖ 𝐵) ∖ 𝐶) ∪ ((𝐴 ∩ 𝐵) ∖ 𝐶))) |
| 9 | | undifabs 4453 |
. . . 4
⊢ ((𝐴 ∖ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∖ 𝐶)) = (𝐴 ∖ 𝐵) |
| 10 | 9 | uneq1i 4139 |
. . 3
⊢ (((𝐴 ∖ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∖ 𝐶)) ∪ ((𝐴 ∩ 𝐵) ∖ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ ((𝐴 ∩ 𝐵) ∖ 𝐶)) |
| 11 | 7, 8, 10 | 3eqtr2i 2764 |
. 2
⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ ((𝐴 ∩ 𝐵) ∖ 𝐶)) |
| 12 | | uncom 4133 |
. 2
⊢ ((𝐴 ∖ 𝐵) ∪ ((𝐴 ∩ 𝐵) ∖ 𝐶)) = (((𝐴 ∩ 𝐵) ∖ 𝐶) ∪ (𝐴 ∖ 𝐵)) |
| 13 | 1, 11, 12 | 3eqtrri 2763 |
1
⊢ (((𝐴 ∩ 𝐵) ∖ 𝐶) ∪ (𝐴 ∖ 𝐵)) = (𝐴 ∖ (𝐵 ∩ 𝐶)) |