Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indifundif Structured version   Visualization version   GIF version

Theorem indifundif 32543
Description: A remarkable equation with sets. (Contributed by Thierry Arnoux, 18-May-2020.)
Assertion
Ref Expression
indifundif (((𝐴𝐵) ∖ 𝐶) ∪ (𝐴𝐵)) = (𝐴 ∖ (𝐵𝐶))

Proof of Theorem indifundif
StepHypRef Expression
1 difindi 4292 . 2 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
2 difundir 4291 . . . . 5 (((𝐴𝐵) ∪ (𝐴𝐵)) ∖ 𝐶) = (((𝐴𝐵) ∖ 𝐶) ∪ ((𝐴𝐵) ∖ 𝐶))
3 inundif 4479 . . . . . 6 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
43difeq1i 4122 . . . . 5 (((𝐴𝐵) ∪ (𝐴𝐵)) ∖ 𝐶) = (𝐴𝐶)
5 uncom 4158 . . . . 5 (((𝐴𝐵) ∖ 𝐶) ∪ ((𝐴𝐵) ∖ 𝐶)) = (((𝐴𝐵) ∖ 𝐶) ∪ ((𝐴𝐵) ∖ 𝐶))
62, 4, 53eqtr3i 2773 . . . 4 (𝐴𝐶) = (((𝐴𝐵) ∖ 𝐶) ∪ ((𝐴𝐵) ∖ 𝐶))
76uneq2i 4165 . . 3 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴𝐵) ∪ (((𝐴𝐵) ∖ 𝐶) ∪ ((𝐴𝐵) ∖ 𝐶)))
8 unass 4172 . . 3 (((𝐴𝐵) ∪ ((𝐴𝐵) ∖ 𝐶)) ∪ ((𝐴𝐵) ∖ 𝐶)) = ((𝐴𝐵) ∪ (((𝐴𝐵) ∖ 𝐶) ∪ ((𝐴𝐵) ∖ 𝐶)))
9 undifabs 4478 . . . 4 ((𝐴𝐵) ∪ ((𝐴𝐵) ∖ 𝐶)) = (𝐴𝐵)
109uneq1i 4164 . . 3 (((𝐴𝐵) ∪ ((𝐴𝐵) ∖ 𝐶)) ∪ ((𝐴𝐵) ∖ 𝐶)) = ((𝐴𝐵) ∪ ((𝐴𝐵) ∖ 𝐶))
117, 8, 103eqtr2i 2771 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴𝐵) ∪ ((𝐴𝐵) ∖ 𝐶))
12 uncom 4158 . 2 ((𝐴𝐵) ∪ ((𝐴𝐵) ∖ 𝐶)) = (((𝐴𝐵) ∖ 𝐶) ∪ (𝐴𝐵))
131, 11, 123eqtrri 2770 1 (((𝐴𝐵) ∖ 𝐶) ∪ (𝐴𝐵)) = (𝐴 ∖ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3948  cun 3949  cin 3950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958
This theorem is referenced by:  inelcarsg  34313
  Copyright terms: Public domain W3C validator