| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undir | Structured version Visualization version GIF version | ||
| Description: Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| undir | ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undi 4260 | . 2 ⊢ (𝐶 ∪ (𝐴 ∩ 𝐵)) = ((𝐶 ∪ 𝐴) ∩ (𝐶 ∪ 𝐵)) | |
| 2 | uncom 4133 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = (𝐶 ∪ (𝐴 ∩ 𝐵)) | |
| 3 | uncom 4133 | . . 3 ⊢ (𝐴 ∪ 𝐶) = (𝐶 ∪ 𝐴) | |
| 4 | uncom 4133 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
| 5 | 3, 4 | ineq12i 4193 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) = ((𝐶 ∪ 𝐴) ∩ (𝐶 ∪ 𝐵)) |
| 6 | 1, 2, 5 | 3eqtr4i 2768 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3924 ∩ cin 3925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-un 3931 df-in 3933 |
| This theorem is referenced by: undif1 4451 dfif4 4516 dfif5 4517 bwth 23348 |
| Copyright terms: Public domain | W3C validator |