MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undir Structured version   Visualization version   GIF version

Theorem undir 4262
Description: Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
undir ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem undir
StepHypRef Expression
1 undi 4260 . 2 (𝐶 ∪ (𝐴𝐵)) = ((𝐶𝐴) ∩ (𝐶𝐵))
2 uncom 4133 . 2 ((𝐴𝐵) ∪ 𝐶) = (𝐶 ∪ (𝐴𝐵))
3 uncom 4133 . . 3 (𝐴𝐶) = (𝐶𝐴)
4 uncom 4133 . . 3 (𝐵𝐶) = (𝐶𝐵)
53, 4ineq12i 4193 . 2 ((𝐴𝐶) ∩ (𝐵𝐶)) = ((𝐶𝐴) ∩ (𝐶𝐵))
61, 2, 53eqtr4i 2768 1 ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3924  cin 3925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-un 3931  df-in 3933
This theorem is referenced by:  undif1  4451  dfif4  4516  dfif5  4517  bwth  23348
  Copyright terms: Public domain W3C validator