Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > undir | Structured version Visualization version GIF version |
Description: Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
undir | ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undi 4205 | . 2 ⊢ (𝐶 ∪ (𝐴 ∩ 𝐵)) = ((𝐶 ∪ 𝐴) ∩ (𝐶 ∪ 𝐵)) | |
2 | uncom 4083 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = (𝐶 ∪ (𝐴 ∩ 𝐵)) | |
3 | uncom 4083 | . . 3 ⊢ (𝐴 ∪ 𝐶) = (𝐶 ∪ 𝐴) | |
4 | uncom 4083 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
5 | 3, 4 | ineq12i 4141 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) = ((𝐶 ∪ 𝐴) ∩ (𝐶 ∪ 𝐵)) |
6 | 1, 2, 5 | 3eqtr4i 2776 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-un 3888 df-in 3890 |
This theorem is referenced by: undif1 4406 dfif4 4471 dfif5 4472 bwth 22469 |
Copyright terms: Public domain | W3C validator |