![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undir | Structured version Visualization version GIF version |
Description: Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
undir | ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undi 4304 | . 2 ⊢ (𝐶 ∪ (𝐴 ∩ 𝐵)) = ((𝐶 ∪ 𝐴) ∩ (𝐶 ∪ 𝐵)) | |
2 | uncom 4181 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = (𝐶 ∪ (𝐴 ∩ 𝐵)) | |
3 | uncom 4181 | . . 3 ⊢ (𝐴 ∪ 𝐶) = (𝐶 ∪ 𝐴) | |
4 | uncom 4181 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
5 | 3, 4 | ineq12i 4239 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) = ((𝐶 ∪ 𝐴) ∩ (𝐶 ∪ 𝐵)) |
6 | 1, 2, 5 | 3eqtr4i 2778 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 |
This theorem is referenced by: undif1 4499 dfif4 4563 dfif5 4564 bwth 23439 |
Copyright terms: Public domain | W3C validator |