![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undif1 | Structured version Visualization version GIF version |
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4472). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
undif1 | ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undir 4277 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) | |
2 | invdif 4269 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
3 | 2 | uneq1i 4160 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
4 | uncom 4154 | . . . . 5 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (V ∖ 𝐵)) | |
5 | unvdif 4475 | . . . . 5 ⊢ (𝐵 ∪ (V ∖ 𝐵)) = V | |
6 | 4, 5 | eqtri 2761 | . . . 4 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = V |
7 | 6 | ineq2i 4210 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∩ V) |
8 | inv1 4395 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ V) = (𝐴 ∪ 𝐵) | |
9 | 7, 8 | eqtri 2761 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = (𝐴 ∪ 𝐵) |
10 | 1, 3, 9 | 3eqtr3i 2769 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 Vcvv 3475 ∖ cdif 3946 ∪ cun 3947 ∩ cin 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 |
This theorem is referenced by: undif2 4477 undifr 4483 unidif0 5359 sofld 6187 fresaun 6763 ralxpmap 8890 pwfilem 9177 enp1ilem 9278 difinf 9316 pwfilemOLD 9346 infdif 10204 fin23lem11 10312 fin1a2lem13 10407 axcclem 10452 ttukeylem1 10504 ttukeylem7 10510 fpwwe2lem12 10637 hashbclem 14411 incexclem 15782 ramub1lem1 16959 ramub1lem2 16960 isstruct2 17082 setsdm 17103 mrieqvlemd 17573 mreexmrid 17587 islbs3 20768 lbsextlem4 20774 basdif0 22456 bwth 22914 locfincmp 23030 cldsubg 23615 nulmbl2 25053 volinun 25063 limcdif 25393 ellimc2 25394 limcmpt2 25401 dvreslem 25426 dvaddbr 25455 dvmulbr 25456 lhop 25533 plyeq0 25725 rlimcnp 26470 difeq 31756 ffsrn 31954 symgcom2 32245 esumpad2 33054 measunl 33214 subfacp1lem1 34170 cvmscld 34264 gg-dvmulbr 35175 pibt2 36298 stoweidlem44 44760 |
Copyright terms: Public domain | W3C validator |