| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undif1 | Structured version Visualization version GIF version | ||
| Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4423). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| undif1 | ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undir 4238 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) | |
| 2 | invdif 4230 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 3 | 2 | uneq1i 4115 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
| 4 | uncom 4109 | . . . . 5 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (V ∖ 𝐵)) | |
| 5 | unvdif 4426 | . . . . 5 ⊢ (𝐵 ∪ (V ∖ 𝐵)) = V | |
| 6 | 4, 5 | eqtri 2752 | . . . 4 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = V |
| 7 | 6 | ineq2i 4168 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∩ V) |
| 8 | inv1 4349 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ V) = (𝐴 ∪ 𝐵) | |
| 9 | 7, 8 | eqtri 2752 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = (𝐴 ∪ 𝐵) |
| 10 | 1, 3, 9 | 3eqtr3i 2760 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3436 ∖ cdif 3900 ∪ cun 3901 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 |
| This theorem is referenced by: undif2 4428 undifr 4434 unidif0 5299 sofld 6136 fresaun 6695 ralxpmap 8823 enp1ilem 9167 difinf 9200 pwfilem 9207 infdif 10102 fin23lem11 10211 fin1a2lem13 10306 axcclem 10351 ttukeylem1 10403 ttukeylem7 10409 fpwwe2lem12 10536 hashbclem 14359 incexclem 15743 ramub1lem1 16938 ramub1lem2 16939 isstruct2 17060 setsdm 17081 mrieqvlemd 17535 mreexmrid 17549 islbs3 21062 lbsextlem4 21068 basdif0 22838 bwth 23295 locfincmp 23411 cldsubg 23996 nulmbl2 25435 volinun 25445 limcdif 25775 ellimc2 25776 limcmpt2 25783 dvreslem 25808 dvaddbr 25838 dvmulbr 25839 dvmulbrOLD 25840 lhop 25919 plyeq0 26114 rlimcnp 26873 difeq 32462 ffsrn 32672 symgcom2 33026 esumpad2 34023 measunl 34183 subfacp1lem1 35152 cvmscld 35246 pibt2 37391 stoweidlem44 46025 |
| Copyright terms: Public domain | W3C validator |