| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undif1 | Structured version Visualization version GIF version | ||
| Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4431). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| undif1 | ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undir 4246 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) | |
| 2 | invdif 4238 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 3 | 2 | uneq1i 4123 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
| 4 | uncom 4117 | . . . . 5 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (V ∖ 𝐵)) | |
| 5 | unvdif 4434 | . . . . 5 ⊢ (𝐵 ∪ (V ∖ 𝐵)) = V | |
| 6 | 4, 5 | eqtri 2752 | . . . 4 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = V |
| 7 | 6 | ineq2i 4176 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∩ V) |
| 8 | inv1 4357 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ V) = (𝐴 ∪ 𝐵) | |
| 9 | 7, 8 | eqtri 2752 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = (𝐴 ∪ 𝐵) |
| 10 | 1, 3, 9 | 3eqtr3i 2760 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3444 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 |
| This theorem is referenced by: undif2 4436 undifr 4442 unidif0 5310 sofld 6148 fresaun 6713 ralxpmap 8846 enp1ilem 9199 difinf 9236 pwfilem 9243 infdif 10137 fin23lem11 10246 fin1a2lem13 10341 axcclem 10386 ttukeylem1 10438 ttukeylem7 10444 fpwwe2lem12 10571 hashbclem 14393 incexclem 15778 ramub1lem1 16973 ramub1lem2 16974 isstruct2 17095 setsdm 17116 mrieqvlemd 17570 mreexmrid 17584 islbs3 21097 lbsextlem4 21103 basdif0 22873 bwth 23330 locfincmp 23446 cldsubg 24031 nulmbl2 25470 volinun 25480 limcdif 25810 ellimc2 25811 limcmpt2 25818 dvreslem 25843 dvaddbr 25873 dvmulbr 25874 dvmulbrOLD 25875 lhop 25954 plyeq0 26149 rlimcnp 26908 difeq 32497 ffsrn 32702 symgcom2 33056 esumpad2 34039 measunl 34199 subfacp1lem1 35159 cvmscld 35253 pibt2 37398 stoweidlem44 46035 |
| Copyright terms: Public domain | W3C validator |