![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undif1 | Structured version Visualization version GIF version |
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4335). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
undif1 | ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undir 4173 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) | |
2 | invdif 4165 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
3 | 2 | uneq1i 4056 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
4 | uncom 4050 | . . . . 5 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (V ∖ 𝐵)) | |
5 | unvdif 4337 | . . . . 5 ⊢ (𝐵 ∪ (V ∖ 𝐵)) = V | |
6 | 4, 5 | eqtri 2819 | . . . 4 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = V |
7 | 6 | ineq2i 4106 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∩ V) |
8 | inv1 4268 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ V) = (𝐴 ∪ 𝐵) | |
9 | 7, 8 | eqtri 2819 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = (𝐴 ∪ 𝐵) |
10 | 1, 3, 9 | 3eqtr3i 2827 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 Vcvv 3437 ∖ cdif 3856 ∪ cun 3857 ∩ cin 3858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 |
This theorem is referenced by: undif2 4339 unidif0 5151 pwundif 5345 sofld 5920 fresaun 6417 ralxpmap 8309 enp1ilem 8598 difinf 8634 pwfilem 8664 infdif 9477 fin23lem11 9585 fin1a2lem13 9680 axcclem 9725 ttukeylem1 9777 ttukeylem7 9783 fpwwe2lem13 9910 hashbclem 13658 incexclem 15024 ramub1lem1 16191 ramub1lem2 16192 isstruct2 16322 setsdm 16346 mrieqvlemd 16729 mreexmrid 16743 islbs3 19617 lbsextlem4 19623 basdif0 21245 bwth 21702 locfincmp 21818 cldsubg 22402 nulmbl2 23820 volinun 23830 limcdif 24157 ellimc2 24158 limcmpt2 24165 dvreslem 24190 dvaddbr 24218 dvmulbr 24219 lhop 24296 plyeq0 24484 rlimcnp 25225 difeq 29969 ffsrn 30153 symgcom2 30387 esumpad2 30932 measunl 31092 subfacp1lem1 32035 cvmscld 32129 pibt2 34248 stoweidlem44 41891 |
Copyright terms: Public domain | W3C validator |