| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undif1 | Structured version Visualization version GIF version | ||
| Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4419). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| undif1 | ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undir 4234 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) | |
| 2 | invdif 4226 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 3 | 2 | uneq1i 4111 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
| 4 | uncom 4105 | . . . . 5 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (V ∖ 𝐵)) | |
| 5 | unvdif 4422 | . . . . 5 ⊢ (𝐵 ∪ (V ∖ 𝐵)) = V | |
| 6 | 4, 5 | eqtri 2754 | . . . 4 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = V |
| 7 | 6 | ineq2i 4164 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∩ V) |
| 8 | inv1 4345 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ V) = (𝐴 ∪ 𝐵) | |
| 9 | 7, 8 | eqtri 2754 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = (𝐴 ∪ 𝐵) |
| 10 | 1, 3, 9 | 3eqtr3i 2762 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 |
| This theorem is referenced by: undif2 4424 undifr 4430 unidif0 5296 sofld 6134 fresaun 6694 ralxpmap 8820 enp1ilem 9162 difinf 9195 pwfilem 9202 infdif 10099 fin23lem11 10208 fin1a2lem13 10303 axcclem 10348 ttukeylem1 10400 ttukeylem7 10406 fpwwe2lem12 10533 hashbclem 14359 incexclem 15743 ramub1lem1 16938 ramub1lem2 16939 isstruct2 17060 setsdm 17081 mrieqvlemd 17535 mreexmrid 17549 islbs3 21092 lbsextlem4 21098 basdif0 22868 bwth 23325 locfincmp 23441 cldsubg 24026 nulmbl2 25464 volinun 25474 limcdif 25804 ellimc2 25805 limcmpt2 25812 dvreslem 25837 dvaddbr 25867 dvmulbr 25868 dvmulbrOLD 25869 lhop 25948 plyeq0 26143 rlimcnp 26902 difeq 32498 ffsrn 32711 symgcom2 33053 esumpad2 34069 measunl 34229 subfacp1lem1 35223 cvmscld 35317 pibt2 37459 stoweidlem44 46090 |
| Copyright terms: Public domain | W3C validator |