![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undif1 | Structured version Visualization version GIF version |
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4470). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
undif1 | ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undir 4275 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) | |
2 | invdif 4267 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
3 | 2 | uneq1i 4158 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
4 | uncom 4152 | . . . . 5 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (V ∖ 𝐵)) | |
5 | unvdif 4473 | . . . . 5 ⊢ (𝐵 ∪ (V ∖ 𝐵)) = V | |
6 | 4, 5 | eqtri 2760 | . . . 4 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = V |
7 | 6 | ineq2i 4208 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∩ V) |
8 | inv1 4393 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ V) = (𝐴 ∪ 𝐵) | |
9 | 7, 8 | eqtri 2760 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = (𝐴 ∪ 𝐵) |
10 | 1, 3, 9 | 3eqtr3i 2768 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 Vcvv 3474 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 |
This theorem is referenced by: undif2 4475 undifr 4481 unidif0 5357 sofld 6183 fresaun 6759 ralxpmap 8886 pwfilem 9173 enp1ilem 9274 difinf 9312 pwfilemOLD 9342 infdif 10200 fin23lem11 10308 fin1a2lem13 10403 axcclem 10448 ttukeylem1 10500 ttukeylem7 10506 fpwwe2lem12 10633 hashbclem 14407 incexclem 15778 ramub1lem1 16955 ramub1lem2 16956 isstruct2 17078 setsdm 17099 mrieqvlemd 17569 mreexmrid 17583 islbs3 20760 lbsextlem4 20766 basdif0 22447 bwth 22905 locfincmp 23021 cldsubg 23606 nulmbl2 25044 volinun 25054 limcdif 25384 ellimc2 25385 limcmpt2 25392 dvreslem 25417 dvaddbr 25446 dvmulbr 25447 lhop 25524 plyeq0 25716 rlimcnp 26459 difeq 31743 ffsrn 31941 symgcom2 32232 esumpad2 33042 measunl 33202 subfacp1lem1 34158 cvmscld 34252 gg-dvmulbr 35163 pibt2 36286 stoweidlem44 44746 |
Copyright terms: Public domain | W3C validator |