![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undif1 | Structured version Visualization version GIF version |
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4477). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
undif1 | ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undir 4292 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) | |
2 | invdif 4284 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
3 | 2 | uneq1i 4173 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
4 | uncom 4167 | . . . . 5 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (V ∖ 𝐵)) | |
5 | unvdif 4480 | . . . . 5 ⊢ (𝐵 ∪ (V ∖ 𝐵)) = V | |
6 | 4, 5 | eqtri 2762 | . . . 4 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = V |
7 | 6 | ineq2i 4224 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∩ V) |
8 | inv1 4403 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ V) = (𝐴 ∪ 𝐵) | |
9 | 7, 8 | eqtri 2762 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = (𝐴 ∪ 𝐵) |
10 | 1, 3, 9 | 3eqtr3i 2770 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 Vcvv 3477 ∖ cdif 3959 ∪ cun 3960 ∩ cin 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 |
This theorem is referenced by: undif2 4482 undifr 4488 unidif0 5365 sofld 6208 fresaun 6779 ralxpmap 8934 enp1ilem 9309 difinf 9346 pwfilem 9353 infdif 10245 fin23lem11 10354 fin1a2lem13 10449 axcclem 10494 ttukeylem1 10546 ttukeylem7 10552 fpwwe2lem12 10679 hashbclem 14487 incexclem 15868 ramub1lem1 17059 ramub1lem2 17060 isstruct2 17182 setsdm 17203 mrieqvlemd 17673 mreexmrid 17687 islbs3 21174 lbsextlem4 21180 basdif0 22975 bwth 23433 locfincmp 23549 cldsubg 24134 nulmbl2 25584 volinun 25594 limcdif 25925 ellimc2 25926 limcmpt2 25933 dvreslem 25958 dvaddbr 25988 dvmulbr 25989 dvmulbrOLD 25990 lhop 26069 plyeq0 26264 rlimcnp 27022 difeq 32545 ffsrn 32746 symgcom2 33086 esumpad2 34036 measunl 34196 subfacp1lem1 35163 cvmscld 35257 pibt2 37399 stoweidlem44 45999 |
Copyright terms: Public domain | W3C validator |