Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > undif1 | Structured version Visualization version GIF version |
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4405). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
undif1 | ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undir 4210 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) | |
2 | invdif 4202 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
3 | 2 | uneq1i 4093 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
4 | uncom 4087 | . . . . 5 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (V ∖ 𝐵)) | |
5 | unvdif 4408 | . . . . 5 ⊢ (𝐵 ∪ (V ∖ 𝐵)) = V | |
6 | 4, 5 | eqtri 2766 | . . . 4 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = V |
7 | 6 | ineq2i 4143 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∩ V) |
8 | inv1 4328 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ V) = (𝐴 ∪ 𝐵) | |
9 | 7, 8 | eqtri 2766 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = (𝐴 ∪ 𝐵) |
10 | 1, 3, 9 | 3eqtr3i 2774 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 |
This theorem is referenced by: undif2 4410 unidif0 5282 pwundifOLD 5486 sofld 6090 fresaun 6645 ralxpmap 8684 pwfilem 8960 enp1ilem 9051 difinf 9084 pwfilemOLD 9113 infdif 9965 fin23lem11 10073 fin1a2lem13 10168 axcclem 10213 ttukeylem1 10265 ttukeylem7 10271 fpwwe2lem12 10398 hashbclem 14164 incexclem 15548 ramub1lem1 16727 ramub1lem2 16728 isstruct2 16850 setsdm 16871 mrieqvlemd 17338 mreexmrid 17352 islbs3 20417 lbsextlem4 20423 basdif0 22103 bwth 22561 locfincmp 22677 cldsubg 23262 nulmbl2 24700 volinun 24710 limcdif 25040 ellimc2 25041 limcmpt2 25048 dvreslem 25073 dvaddbr 25102 dvmulbr 25103 lhop 25180 plyeq0 25372 rlimcnp 26115 difeq 30865 ffsrn 31064 symgcom2 31353 esumpad2 32024 measunl 32184 subfacp1lem1 33141 cvmscld 33235 pibt2 35588 stoweidlem44 43585 |
Copyright terms: Public domain | W3C validator |