| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undif1 | Structured version Visualization version GIF version | ||
| Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4438). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| undif1 | ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undir 4253 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) | |
| 2 | invdif 4245 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 3 | 2 | uneq1i 4130 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
| 4 | uncom 4124 | . . . . 5 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (V ∖ 𝐵)) | |
| 5 | unvdif 4441 | . . . . 5 ⊢ (𝐵 ∪ (V ∖ 𝐵)) = V | |
| 6 | 4, 5 | eqtri 2753 | . . . 4 ⊢ ((V ∖ 𝐵) ∪ 𝐵) = V |
| 7 | 6 | ineq2i 4183 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∩ V) |
| 8 | inv1 4364 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ V) = (𝐴 ∪ 𝐵) | |
| 9 | 7, 8 | eqtri 2753 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = (𝐴 ∪ 𝐵) |
| 10 | 1, 3, 9 | 3eqtr3i 2761 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ∖ cdif 3914 ∪ cun 3915 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 |
| This theorem is referenced by: undif2 4443 undifr 4449 unidif0 5318 sofld 6163 fresaun 6734 ralxpmap 8872 enp1ilem 9230 difinf 9267 pwfilem 9274 infdif 10168 fin23lem11 10277 fin1a2lem13 10372 axcclem 10417 ttukeylem1 10469 ttukeylem7 10475 fpwwe2lem12 10602 hashbclem 14424 incexclem 15809 ramub1lem1 17004 ramub1lem2 17005 isstruct2 17126 setsdm 17147 mrieqvlemd 17597 mreexmrid 17611 islbs3 21072 lbsextlem4 21078 basdif0 22847 bwth 23304 locfincmp 23420 cldsubg 24005 nulmbl2 25444 volinun 25454 limcdif 25784 ellimc2 25785 limcmpt2 25792 dvreslem 25817 dvaddbr 25847 dvmulbr 25848 dvmulbrOLD 25849 lhop 25928 plyeq0 26123 rlimcnp 26882 difeq 32454 ffsrn 32659 symgcom2 33048 esumpad2 34053 measunl 34213 subfacp1lem1 35173 cvmscld 35267 pibt2 37412 stoweidlem44 46049 |
| Copyright terms: Public domain | W3C validator |