MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undif1 Structured version   Visualization version   GIF version

Theorem undif1 4481
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4477). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
undif1 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)

Proof of Theorem undif1
StepHypRef Expression
1 undir 4292 . 2 ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵))
2 invdif 4284 . . 3 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
32uneq1i 4173 . 2 ((𝐴 ∩ (V ∖ 𝐵)) ∪ 𝐵) = ((𝐴𝐵) ∪ 𝐵)
4 uncom 4167 . . . . 5 ((V ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (V ∖ 𝐵))
5 unvdif 4480 . . . . 5 (𝐵 ∪ (V ∖ 𝐵)) = V
64, 5eqtri 2762 . . . 4 ((V ∖ 𝐵) ∪ 𝐵) = V
76ineq2i 4224 . . 3 ((𝐴𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = ((𝐴𝐵) ∩ V)
8 inv1 4403 . . 3 ((𝐴𝐵) ∩ V) = (𝐴𝐵)
97, 8eqtri 2762 . 2 ((𝐴𝐵) ∩ ((V ∖ 𝐵) ∪ 𝐵)) = (𝐴𝐵)
101, 3, 93eqtr3i 2770 1 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  Vcvv 3477  cdif 3959  cun 3960  cin 3961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339
This theorem is referenced by:  undif2  4482  undifr  4488  unidif0  5365  sofld  6208  fresaun  6779  ralxpmap  8934  enp1ilem  9309  difinf  9346  pwfilem  9353  infdif  10245  fin23lem11  10354  fin1a2lem13  10449  axcclem  10494  ttukeylem1  10546  ttukeylem7  10552  fpwwe2lem12  10679  hashbclem  14487  incexclem  15868  ramub1lem1  17059  ramub1lem2  17060  isstruct2  17182  setsdm  17203  mrieqvlemd  17673  mreexmrid  17687  islbs3  21174  lbsextlem4  21180  basdif0  22975  bwth  23433  locfincmp  23549  cldsubg  24134  nulmbl2  25584  volinun  25594  limcdif  25925  ellimc2  25926  limcmpt2  25933  dvreslem  25958  dvaddbr  25988  dvmulbr  25989  dvmulbrOLD  25990  lhop  26069  plyeq0  26264  rlimcnp  27022  difeq  32545  ffsrn  32746  symgcom2  33086  esumpad2  34036  measunl  34196  subfacp1lem1  35163  cvmscld  35257  pibt2  37399  stoweidlem44  45999
  Copyright terms: Public domain W3C validator