| Step | Hyp | Ref
| Expression |
| 1 | | eleq2 2824 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) → (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ 𝑥 ∈ (𝐵 ∩ 𝐶))) |
| 2 | | elin 3947 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) |
| 3 | | elin 3947 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
| 4 | 1, 2, 3 | 3bitr3g 313 |
. . . . . 6
⊢ ((𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 5 | | iba 527 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) |
| 6 | | iba 527 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 7 | 5, 6 | bibi12d 345 |
. . . . . 6
⊢ (𝑥 ∈ 𝐶 → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)))) |
| 8 | 4, 7 | imbitrrid 246 |
. . . . 5
⊢ (𝑥 ∈ 𝐶 → ((𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
| 9 | 8 | adantld 490 |
. . . 4
⊢ (𝑥 ∈ 𝐶 → (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
| 10 | | uncom 4138 |
. . . . . . . . 9
⊢ (𝐴 ∪ 𝐶) = (𝐶 ∪ 𝐴) |
| 11 | | uncom 4138 |
. . . . . . . . 9
⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) |
| 12 | 10, 11 | eqeq12i 2754 |
. . . . . . . 8
⊢ ((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ↔ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| 13 | | eleq2 2824 |
. . . . . . . 8
⊢ ((𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) → (𝑥 ∈ (𝐶 ∪ 𝐴) ↔ 𝑥 ∈ (𝐶 ∪ 𝐵))) |
| 14 | 12, 13 | sylbi 217 |
. . . . . . 7
⊢ ((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) → (𝑥 ∈ (𝐶 ∪ 𝐴) ↔ 𝑥 ∈ (𝐶 ∪ 𝐵))) |
| 15 | | elun 4133 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐶 ∪ 𝐴) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) |
| 16 | | elun 4133 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐶 ∪ 𝐵) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵)) |
| 17 | 14, 15, 16 | 3bitr3g 313 |
. . . . . 6
⊢ ((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) → ((𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵))) |
| 18 | | biorf 936 |
. . . . . . 7
⊢ (¬
𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) |
| 19 | | biorf 936 |
. . . . . . 7
⊢ (¬
𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵))) |
| 20 | 18, 19 | bibi12d 345 |
. . . . . 6
⊢ (¬
𝑥 ∈ 𝐶 → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵)))) |
| 21 | 17, 20 | imbitrrid 246 |
. . . . 5
⊢ (¬
𝑥 ∈ 𝐶 → ((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
| 22 | 21 | adantrd 491 |
. . . 4
⊢ (¬
𝑥 ∈ 𝐶 → (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
| 23 | 9, 22 | pm2.61i 182 |
. . 3
⊢ (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 24 | 23 | eqrdv 2734 |
. 2
⊢ (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) → 𝐴 = 𝐵) |
| 25 | | uneq1 4141 |
. . 3
⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| 26 | | ineq1 4193 |
. . 3
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| 27 | 25, 26 | jca 511 |
. 2
⊢ (𝐴 = 𝐵 → ((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
| 28 | 24, 27 | impbii 209 |
1
⊢ (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) ↔ 𝐴 = 𝐵) |