Step | Hyp | Ref
| Expression |
1 | | eleq2 2827 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) → (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ 𝑥 ∈ (𝐵 ∩ 𝐶))) |
2 | | elin 3903 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) |
3 | | elin 3903 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
4 | 1, 2, 3 | 3bitr3g 313 |
. . . . . 6
⊢ ((𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
5 | | iba 528 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) |
6 | | iba 528 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
7 | 5, 6 | bibi12d 346 |
. . . . . 6
⊢ (𝑥 ∈ 𝐶 → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)))) |
8 | 4, 7 | syl5ibr 245 |
. . . . 5
⊢ (𝑥 ∈ 𝐶 → ((𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
9 | 8 | adantld 491 |
. . . 4
⊢ (𝑥 ∈ 𝐶 → (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
10 | | uncom 4087 |
. . . . . . . . 9
⊢ (𝐴 ∪ 𝐶) = (𝐶 ∪ 𝐴) |
11 | | uncom 4087 |
. . . . . . . . 9
⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) |
12 | 10, 11 | eqeq12i 2756 |
. . . . . . . 8
⊢ ((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ↔ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
13 | | eleq2 2827 |
. . . . . . . 8
⊢ ((𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) → (𝑥 ∈ (𝐶 ∪ 𝐴) ↔ 𝑥 ∈ (𝐶 ∪ 𝐵))) |
14 | 12, 13 | sylbi 216 |
. . . . . . 7
⊢ ((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) → (𝑥 ∈ (𝐶 ∪ 𝐴) ↔ 𝑥 ∈ (𝐶 ∪ 𝐵))) |
15 | | elun 4083 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐶 ∪ 𝐴) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) |
16 | | elun 4083 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐶 ∪ 𝐵) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵)) |
17 | 14, 15, 16 | 3bitr3g 313 |
. . . . . 6
⊢ ((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) → ((𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵))) |
18 | | biorf 934 |
. . . . . . 7
⊢ (¬
𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) |
19 | | biorf 934 |
. . . . . . 7
⊢ (¬
𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵))) |
20 | 18, 19 | bibi12d 346 |
. . . . . 6
⊢ (¬
𝑥 ∈ 𝐶 → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵)))) |
21 | 17, 20 | syl5ibr 245 |
. . . . 5
⊢ (¬
𝑥 ∈ 𝐶 → ((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
22 | 21 | adantrd 492 |
. . . 4
⊢ (¬
𝑥 ∈ 𝐶 → (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
23 | 9, 22 | pm2.61i 182 |
. . 3
⊢ (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
24 | 23 | eqrdv 2736 |
. 2
⊢ (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) → 𝐴 = 𝐵) |
25 | | uneq1 4090 |
. . 3
⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
26 | | ineq1 4139 |
. . 3
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
27 | 25, 26 | jca 512 |
. 2
⊢ (𝐴 = 𝐵 → ((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
28 | 24, 27 | impbii 208 |
1
⊢ (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) ↔ 𝐴 = 𝐵) |