MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uni0OLD Structured version   Visualization version   GIF version

Theorem uni0OLD 4885
Description: Obsolete version of uni0 4884 as of 1-Feb-2026. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5242. (Revised by Eric Schmidt, 4-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
uni0OLD ∅ = ∅

Proof of Theorem uni0OLD
StepHypRef Expression
1 0ss 4347 . 2 ∅ ⊆ {∅}
2 uni0b 4882 . 2 ( ∅ = ∅ ↔ ∅ ⊆ {∅})
31, 2mpbir 231 1 ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3897  c0 4280  {csn 4573   cuni 4856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3900  df-ss 3914  df-nul 4281  df-sn 4574  df-uni 4857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator