Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version |
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5230. (Revised by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
uni0 | ⊢ ∪ ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4330 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | uni0b 4867 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ∪ ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3887 ∅c0 4256 {csn 4561 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-uni 4840 |
This theorem is referenced by: csbuni 4870 uniintsn 4918 iununi 5028 unisn2 5236 eqsnuniex 5283 opswap 6132 unixp0 6186 unixpid 6187 unizlim 6383 iotanul 6411 funfv 6855 dffv2 6863 1stval 7833 2ndval 7834 1stnpr 7835 2ndnpr 7836 1st0 7837 2nd0 7838 1st2val 7859 2nd2val 7860 brtpos0 8049 tpostpos 8062 nnunifi 9065 supval2 9214 sup00 9223 infeq5 9395 rankuni 9621 rankxplim3 9639 iunfictbso 9870 cflim2 10019 fin1a2lem11 10166 itunisuc 10175 itunitc 10177 ttukeylem4 10268 relexpfldd 14761 incexclem 15548 arwval 17758 dprdsn 19639 zrhval 20709 0opn 22053 indistopon 22151 mretopd 22243 hauscmplem 22557 cmpfi 22559 comppfsc 22683 alexsublem 23195 alexsubALTlem2 23199 ptcmplem2 23204 lebnumlem3 24126 locfinref 31791 prsiga 32099 sigapildsys 32130 dya2iocuni 32250 fiunelcarsg 32283 carsgclctunlem1 32284 carsgclctunlem3 32287 nnuni 33692 old0 34043 made0 34057 unisnif 34227 limsucncmpi 34634 heicant 35812 ovoliunnfl 35819 voliunnfl 35821 volsupnfl 35822 mbfresfi 35823 stoweidlem35 43576 stoweidlem39 43580 prsal 43859 issalnnd 43884 ismeannd 44005 caragenunicl 44062 isomennd 44069 ipolub0 46278 |
Copyright terms: Public domain | W3C validator |