| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version | ||
| Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5246. (Revised by Eric Schmidt, 4-Apr-2007.) Avoid ax-11 2162. (Revised by TM, 1-Feb-2026.) |
| Ref | Expression |
|---|---|
| uni0 | ⊢ ∪ ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4287 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | 1 | intnan 486 | . . . 4 ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ∅) |
| 3 | 2 | nex 1801 | . . 3 ⊢ ¬ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ∅) |
| 4 | eluni 4861 | . . 3 ⊢ (𝑥 ∈ ∪ ∅ ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ∅)) | |
| 5 | 3, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ ∪ ∅ |
| 6 | 5 | nel0 4303 | 1 ⊢ ∪ ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∅c0 4282 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-nul 4283 df-uni 4859 |
| This theorem is referenced by: csbuni 4888 uniintsn 4935 iununi 5049 unisn2 5252 eqsnuniex 5301 opswap 6181 unixp0 6235 unixpid 6236 unizlim 6435 iotanul 6466 funfv 6915 dffv2 6923 1stval 7929 2ndval 7930 1stnpr 7931 2ndnpr 7932 1st0 7933 2nd0 7934 1st2val 7955 2nd2val 7956 brtpos0 8169 tpostpos 8182 nnunifi 9182 supval2 9346 sup00 9356 infeq5 9534 rankuni 9763 rankxplim3 9781 iunfictbso 10012 cflim2 10161 fin1a2lem11 10308 itunisuc 10317 itunitc 10319 ttukeylem4 10410 relexpfldd 14959 incexclem 15745 arwval 17952 dprdsn 19952 zrhval 21446 0opn 22820 indistopon 22917 mretopd 23008 hauscmplem 23322 cmpfi 23324 comppfsc 23448 alexsublem 23960 alexsubALTlem2 23964 ptcmplem2 23969 lebnumlem3 24890 old0 27801 made0 27819 locfinref 33875 prsiga 34165 sigapildsys 34196 dya2iocuni 34317 fiunelcarsg 34350 carsgclctunlem1 34351 carsgclctunlem3 34354 fissorduni 35122 fineqvnttrclselem1 35162 wevgblacfn 35174 nnuni 35792 unisnif 35988 limsucncmpi 36510 heicant 37716 ovoliunnfl 37723 voliunnfl 37725 volsupnfl 37726 mbfresfi 37727 onov0suclim 43392 stoweidlem35 46158 stoweidlem39 46162 prsal 46441 issalnnd 46468 ismeannd 46590 caragenunicl 46647 isomennd 46654 dftpos5 48999 ipolub0 49117 |
| Copyright terms: Public domain | W3C validator |