![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version |
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5324. (Revised by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
uni0 | ⊢ ∪ ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4423 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | uni0b 4957 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ ∪ ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊆ wss 3976 ∅c0 4352 {csn 4648 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-sn 4649 df-uni 4932 |
This theorem is referenced by: csbuni 4960 uniintsn 5009 iununi 5122 unisn2 5330 eqsnuniex 5379 opswap 6260 unixp0 6314 unixpid 6315 unizlim 6518 iotanul 6551 funfv 7009 dffv2 7017 1stval 8032 2ndval 8033 1stnpr 8034 2ndnpr 8035 1st0 8036 2nd0 8037 1st2val 8058 2nd2val 8059 brtpos0 8274 tpostpos 8287 nnunifi 9355 supval2 9524 sup00 9533 infeq5 9706 rankuni 9932 rankxplim3 9950 iunfictbso 10183 cflim2 10332 fin1a2lem11 10479 itunisuc 10488 itunitc 10490 ttukeylem4 10581 relexpfldd 15099 incexclem 15884 arwval 18110 dprdsn 20080 zrhval 21541 0opn 22931 indistopon 23029 mretopd 23121 hauscmplem 23435 cmpfi 23437 comppfsc 23561 alexsublem 24073 alexsubALTlem2 24077 ptcmplem2 24082 lebnumlem3 25014 old0 27916 made0 27930 locfinref 33787 prsiga 34095 sigapildsys 34126 dya2iocuni 34248 fiunelcarsg 34281 carsgclctunlem1 34282 carsgclctunlem3 34285 wevgblacfn 35076 nnuni 35689 unisnif 35889 limsucncmpi 36411 heicant 37615 ovoliunnfl 37622 voliunnfl 37624 volsupnfl 37625 mbfresfi 37626 onov0suclim 43236 stoweidlem35 45956 stoweidlem39 45960 prsal 46239 issalnnd 46266 ismeannd 46388 caragenunicl 46445 isomennd 46452 ipolub0 48664 |
Copyright terms: Public domain | W3C validator |