| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version | ||
| Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5264. (Revised by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| uni0 | ⊢ ∪ ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4366 | . 2 ⊢ ∅ ⊆ {∅} | |
| 2 | uni0b 4900 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∪ ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3917 ∅c0 4299 {csn 4592 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-dif 3920 df-ss 3934 df-nul 4300 df-sn 4593 df-uni 4875 |
| This theorem is referenced by: csbuni 4903 uniintsn 4952 iununi 5066 unisn2 5270 eqsnuniex 5319 opswap 6205 unixp0 6259 unixpid 6260 unizlim 6460 iotanul 6492 funfv 6951 dffv2 6959 1stval 7973 2ndval 7974 1stnpr 7975 2ndnpr 7976 1st0 7977 2nd0 7978 1st2val 7999 2nd2val 8000 brtpos0 8215 tpostpos 8228 nnunifi 9245 supval2 9413 sup00 9423 infeq5 9597 rankuni 9823 rankxplim3 9841 iunfictbso 10074 cflim2 10223 fin1a2lem11 10370 itunisuc 10379 itunitc 10381 ttukeylem4 10472 relexpfldd 15023 incexclem 15809 arwval 18012 dprdsn 19975 zrhval 21424 0opn 22798 indistopon 22895 mretopd 22986 hauscmplem 23300 cmpfi 23302 comppfsc 23426 alexsublem 23938 alexsubALTlem2 23942 ptcmplem2 23947 lebnumlem3 24869 old0 27774 made0 27792 locfinref 33838 prsiga 34128 sigapildsys 34159 dya2iocuni 34281 fiunelcarsg 34314 carsgclctunlem1 34315 carsgclctunlem3 34318 wevgblacfn 35103 nnuni 35721 unisnif 35920 limsucncmpi 36440 heicant 37656 ovoliunnfl 37663 voliunnfl 37665 volsupnfl 37666 mbfresfi 37667 onov0suclim 43270 stoweidlem35 46040 stoweidlem39 46044 prsal 46323 issalnnd 46350 ismeannd 46472 caragenunicl 46529 isomennd 46536 dftpos5 48866 ipolub0 48984 |
| Copyright terms: Public domain | W3C validator |