| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version | ||
| Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5276. (Revised by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| uni0 | ⊢ ∪ ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4375 | . 2 ⊢ ∅ ⊆ {∅} | |
| 2 | uni0b 4909 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∪ ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3926 ∅c0 4308 {csn 4601 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-dif 3929 df-ss 3943 df-nul 4309 df-sn 4602 df-uni 4884 |
| This theorem is referenced by: csbuni 4912 uniintsn 4961 iununi 5075 unisn2 5282 eqsnuniex 5331 opswap 6218 unixp0 6272 unixpid 6273 unizlim 6476 iotanul 6508 funfv 6965 dffv2 6973 1stval 7988 2ndval 7989 1stnpr 7990 2ndnpr 7991 1st0 7992 2nd0 7993 1st2val 8014 2nd2val 8015 brtpos0 8230 tpostpos 8243 nnunifi 9297 supval2 9465 sup00 9475 infeq5 9649 rankuni 9875 rankxplim3 9893 iunfictbso 10126 cflim2 10275 fin1a2lem11 10422 itunisuc 10431 itunitc 10433 ttukeylem4 10524 relexpfldd 15067 incexclem 15850 arwval 18054 dprdsn 20017 zrhval 21466 0opn 22840 indistopon 22937 mretopd 23028 hauscmplem 23342 cmpfi 23344 comppfsc 23468 alexsublem 23980 alexsubALTlem2 23984 ptcmplem2 23989 lebnumlem3 24911 old0 27815 made0 27829 locfinref 33818 prsiga 34108 sigapildsys 34139 dya2iocuni 34261 fiunelcarsg 34294 carsgclctunlem1 34295 carsgclctunlem3 34298 wevgblacfn 35077 nnuni 35690 unisnif 35889 limsucncmpi 36409 heicant 37625 ovoliunnfl 37632 voliunnfl 37634 volsupnfl 37635 mbfresfi 37636 onov0suclim 43245 stoweidlem35 46012 stoweidlem39 46016 prsal 46295 issalnnd 46322 ismeannd 46444 caragenunicl 46501 isomennd 46508 dftpos5 48797 ipolub0 48914 |
| Copyright terms: Public domain | W3C validator |