![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version |
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5306. (Revised by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
uni0 | ⊢ ∪ ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4396 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | uni0b 4937 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ∪ ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊆ wss 3948 ∅c0 4322 {csn 4628 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-v 3476 df-dif 3951 df-in 3955 df-ss 3965 df-nul 4323 df-sn 4629 df-uni 4909 |
This theorem is referenced by: csbuni 4940 uniintsn 4991 iununi 5102 unisn2 5312 eqsnuniex 5359 opswap 6228 unixp0 6282 unixpid 6283 unizlim 6487 iotanul 6521 funfv 6978 dffv2 6986 1stval 7979 2ndval 7980 1stnpr 7981 2ndnpr 7982 1st0 7983 2nd0 7984 1st2val 8005 2nd2val 8006 brtpos0 8220 tpostpos 8233 nnunifi 9296 supval2 9452 sup00 9461 infeq5 9634 rankuni 9860 rankxplim3 9878 iunfictbso 10111 cflim2 10260 fin1a2lem11 10407 itunisuc 10416 itunitc 10418 ttukeylem4 10509 relexpfldd 14999 incexclem 15784 arwval 17995 dprdsn 19908 zrhval 21063 0opn 22413 indistopon 22511 mretopd 22603 hauscmplem 22917 cmpfi 22919 comppfsc 23043 alexsublem 23555 alexsubALTlem2 23559 ptcmplem2 23564 lebnumlem3 24486 old0 27362 made0 27376 locfinref 32890 prsiga 33198 sigapildsys 33229 dya2iocuni 33351 fiunelcarsg 33384 carsgclctunlem1 33385 carsgclctunlem3 33388 nnuni 34771 unisnif 34972 limsucncmpi 35422 heicant 36615 ovoliunnfl 36622 voliunnfl 36624 volsupnfl 36625 mbfresfi 36626 onov0suclim 42112 stoweidlem35 44836 stoweidlem39 44840 prsal 45119 issalnnd 45146 ismeannd 45268 caragenunicl 45325 isomennd 45332 ipolub0 47701 |
Copyright terms: Public domain | W3C validator |