| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version | ||
| Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5248. (Revised by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| uni0 | ⊢ ∪ ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4353 | . 2 ⊢ ∅ ⊆ {∅} | |
| 2 | uni0b 4887 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∪ ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3905 ∅c0 4286 {csn 4579 ∪ cuni 4861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3440 df-dif 3908 df-ss 3922 df-nul 4287 df-sn 4580 df-uni 4862 |
| This theorem is referenced by: csbuni 4890 uniintsn 4938 iununi 5051 unisn2 5254 eqsnuniex 5303 opswap 6182 unixp0 6235 unixpid 6236 unizlim 6435 iotanul 6466 funfv 6914 dffv2 6922 1stval 7933 2ndval 7934 1stnpr 7935 2ndnpr 7936 1st0 7937 2nd0 7938 1st2val 7959 2nd2val 7960 brtpos0 8173 tpostpos 8186 nnunifi 9196 supval2 9364 sup00 9374 infeq5 9552 rankuni 9778 rankxplim3 9796 iunfictbso 10027 cflim2 10176 fin1a2lem11 10323 itunisuc 10332 itunitc 10334 ttukeylem4 10425 relexpfldd 14975 incexclem 15761 arwval 17968 dprdsn 19935 zrhval 21432 0opn 22807 indistopon 22904 mretopd 22995 hauscmplem 23309 cmpfi 23311 comppfsc 23435 alexsublem 23947 alexsubALTlem2 23951 ptcmplem2 23956 lebnumlem3 24878 old0 27787 made0 27805 locfinref 33810 prsiga 34100 sigapildsys 34131 dya2iocuni 34253 fiunelcarsg 34286 carsgclctunlem1 34287 carsgclctunlem3 34290 wevgblacfn 35084 nnuni 35702 unisnif 35901 limsucncmpi 36421 heicant 37637 ovoliunnfl 37644 voliunnfl 37646 volsupnfl 37647 mbfresfi 37648 onov0suclim 43250 stoweidlem35 46020 stoweidlem39 46024 prsal 46303 issalnnd 46330 ismeannd 46452 caragenunicl 46509 isomennd 46516 dftpos5 48862 ipolub0 48980 |
| Copyright terms: Public domain | W3C validator |