![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version |
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5306. (Revised by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
uni0 | ⊢ ∪ ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4396 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | uni0b 4937 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ∪ ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊆ wss 3948 ∅c0 4322 {csn 4628 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-v 3476 df-dif 3951 df-in 3955 df-ss 3965 df-nul 4323 df-sn 4629 df-uni 4909 |
This theorem is referenced by: csbuni 4940 uniintsn 4991 iununi 5102 unisn2 5312 eqsnuniex 5359 opswap 6228 unixp0 6282 unixpid 6283 unizlim 6487 iotanul 6521 funfv 6978 dffv2 6986 1stval 7976 2ndval 7977 1stnpr 7978 2ndnpr 7979 1st0 7980 2nd0 7981 1st2val 8002 2nd2val 8003 brtpos0 8217 tpostpos 8230 nnunifi 9293 supval2 9449 sup00 9458 infeq5 9631 rankuni 9857 rankxplim3 9875 iunfictbso 10108 cflim2 10257 fin1a2lem11 10404 itunisuc 10413 itunitc 10415 ttukeylem4 10506 relexpfldd 14996 incexclem 15781 arwval 17992 dprdsn 19905 zrhval 21056 0opn 22405 indistopon 22503 mretopd 22595 hauscmplem 22909 cmpfi 22911 comppfsc 23035 alexsublem 23547 alexsubALTlem2 23551 ptcmplem2 23556 lebnumlem3 24478 old0 27351 made0 27365 locfinref 32816 prsiga 33124 sigapildsys 33155 dya2iocuni 33277 fiunelcarsg 33310 carsgclctunlem1 33311 carsgclctunlem3 33314 nnuni 34691 unisnif 34892 limsucncmpi 35325 heicant 36518 ovoliunnfl 36525 voliunnfl 36527 volsupnfl 36528 mbfresfi 36529 onov0suclim 42014 stoweidlem35 44741 stoweidlem39 44745 prsal 45024 issalnnd 45051 ismeannd 45173 caragenunicl 45230 isomennd 45237 ipolub0 47607 |
Copyright terms: Public domain | W3C validator |