![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version |
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5307. (Revised by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
uni0 | ⊢ ∪ ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4397 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | uni0b 4938 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ∪ ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ⊆ wss 3949 ∅c0 4323 {csn 4629 ∪ cuni 4909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-v 3477 df-dif 3952 df-in 3956 df-ss 3966 df-nul 4324 df-sn 4630 df-uni 4910 |
This theorem is referenced by: csbuni 4941 uniintsn 4992 iununi 5103 unisn2 5313 eqsnuniex 5360 opswap 6229 unixp0 6283 unixpid 6284 unizlim 6488 iotanul 6522 funfv 6979 dffv2 6987 1stval 7977 2ndval 7978 1stnpr 7979 2ndnpr 7980 1st0 7981 2nd0 7982 1st2val 8003 2nd2val 8004 brtpos0 8218 tpostpos 8231 nnunifi 9294 supval2 9450 sup00 9459 infeq5 9632 rankuni 9858 rankxplim3 9876 iunfictbso 10109 cflim2 10258 fin1a2lem11 10405 itunisuc 10414 itunitc 10416 ttukeylem4 10507 relexpfldd 14997 incexclem 15782 arwval 17993 dprdsn 19906 zrhval 21057 0opn 22406 indistopon 22504 mretopd 22596 hauscmplem 22910 cmpfi 22912 comppfsc 23036 alexsublem 23548 alexsubALTlem2 23552 ptcmplem2 23557 lebnumlem3 24479 old0 27354 made0 27368 locfinref 32821 prsiga 33129 sigapildsys 33160 dya2iocuni 33282 fiunelcarsg 33315 carsgclctunlem1 33316 carsgclctunlem3 33319 nnuni 34696 unisnif 34897 limsucncmpi 35330 heicant 36523 ovoliunnfl 36530 voliunnfl 36532 volsupnfl 36533 mbfresfi 36534 onov0suclim 42024 stoweidlem35 44751 stoweidlem39 44755 prsal 45034 issalnnd 45061 ismeannd 45183 caragenunicl 45240 isomennd 45247 ipolub0 47617 |
Copyright terms: Public domain | W3C validator |