![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version |
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5311. (Revised by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
uni0 | ⊢ ∪ ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4405 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | uni0b 4937 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ ∪ ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ⊆ wss 3962 ∅c0 4338 {csn 4630 ∪ cuni 4911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-11 2154 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-v 3479 df-dif 3965 df-ss 3979 df-nul 4339 df-sn 4631 df-uni 4912 |
This theorem is referenced by: csbuni 4940 uniintsn 4989 iununi 5103 unisn2 5317 eqsnuniex 5366 opswap 6250 unixp0 6304 unixpid 6305 unizlim 6508 iotanul 6540 funfv 6995 dffv2 7003 1stval 8014 2ndval 8015 1stnpr 8016 2ndnpr 8017 1st0 8018 2nd0 8019 1st2val 8040 2nd2val 8041 brtpos0 8256 tpostpos 8269 nnunifi 9324 supval2 9492 sup00 9501 infeq5 9674 rankuni 9900 rankxplim3 9918 iunfictbso 10151 cflim2 10300 fin1a2lem11 10447 itunisuc 10456 itunitc 10458 ttukeylem4 10549 relexpfldd 15085 incexclem 15868 arwval 18096 dprdsn 20070 zrhval 21535 0opn 22925 indistopon 23023 mretopd 23115 hauscmplem 23429 cmpfi 23431 comppfsc 23555 alexsublem 24067 alexsubALTlem2 24071 ptcmplem2 24076 lebnumlem3 25008 old0 27912 made0 27926 locfinref 33801 prsiga 34111 sigapildsys 34142 dya2iocuni 34264 fiunelcarsg 34297 carsgclctunlem1 34298 carsgclctunlem3 34301 wevgblacfn 35092 nnuni 35706 unisnif 35906 limsucncmpi 36427 heicant 37641 ovoliunnfl 37648 voliunnfl 37650 volsupnfl 37651 mbfresfi 37652 onov0suclim 43263 stoweidlem35 45990 stoweidlem39 45994 prsal 46273 issalnnd 46300 ismeannd 46422 caragenunicl 46479 isomennd 46486 ipolub0 48780 |
Copyright terms: Public domain | W3C validator |