Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version |
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5225. (Revised by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
uni0 | ⊢ ∪ ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4327 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | uni0b 4864 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ∪ ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3883 ∅c0 4253 {csn 4558 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-uni 4837 |
This theorem is referenced by: csbuni 4867 uniintsn 4915 iununi 5024 unisn2 5231 eqsnuniex 5278 opswap 6121 unixp0 6175 unixpid 6176 unizlim 6368 iotanul 6396 funfv 6837 dffv2 6845 1stval 7806 2ndval 7807 1stnpr 7808 2ndnpr 7809 1st0 7810 2nd0 7811 1st2val 7832 2nd2val 7833 brtpos0 8020 tpostpos 8033 nnunifi 8995 supval2 9144 sup00 9153 infeq5 9325 rankuni 9552 rankxplim3 9570 iunfictbso 9801 cflim2 9950 fin1a2lem11 10097 itunisuc 10106 itunitc 10108 ttukeylem4 10199 relexpfldd 14689 incexclem 15476 arwval 17674 dprdsn 19554 zrhval 20621 0opn 21961 indistopon 22059 mretopd 22151 hauscmplem 22465 cmpfi 22467 comppfsc 22591 alexsublem 23103 alexsubALTlem2 23107 ptcmplem2 23112 lebnumlem3 24032 locfinref 31693 prsiga 31999 sigapildsys 32030 dya2iocuni 32150 fiunelcarsg 32183 carsgclctunlem1 32184 carsgclctunlem3 32187 nnuni 33595 old0 33970 made0 33984 unisnif 34154 limsucncmpi 34561 heicant 35739 ovoliunnfl 35746 voliunnfl 35748 volsupnfl 35749 mbfresfi 35750 stoweidlem35 43466 stoweidlem39 43470 prsal 43749 issalnnd 43774 ismeannd 43895 caragenunicl 43952 isomennd 43959 ipolub0 46166 |
Copyright terms: Public domain | W3C validator |