Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version |
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5254. (Revised by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
uni0 | ⊢ ∪ ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4347 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | uni0b 4885 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ∪ ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊆ wss 3901 ∅c0 4273 {csn 4577 ∪ cuni 4856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-v 3444 df-dif 3904 df-in 3908 df-ss 3918 df-nul 4274 df-sn 4578 df-uni 4857 |
This theorem is referenced by: csbuni 4888 uniintsn 4939 iununi 5050 unisn2 5260 eqsnuniex 5307 opswap 6171 unixp0 6225 unixpid 6226 unizlim 6427 iotanul 6461 funfv 6915 dffv2 6923 1stval 7905 2ndval 7906 1stnpr 7907 2ndnpr 7908 1st0 7909 2nd0 7910 1st2val 7931 2nd2val 7932 brtpos0 8123 tpostpos 8136 nnunifi 9163 supval2 9316 sup00 9325 infeq5 9498 rankuni 9724 rankxplim3 9742 iunfictbso 9975 cflim2 10124 fin1a2lem11 10271 itunisuc 10280 itunitc 10282 ttukeylem4 10373 relexpfldd 14860 incexclem 15647 arwval 17855 dprdsn 19733 zrhval 20814 0opn 22158 indistopon 22256 mretopd 22348 hauscmplem 22662 cmpfi 22664 comppfsc 22788 alexsublem 23300 alexsubALTlem2 23304 ptcmplem2 23309 lebnumlem3 24231 locfinref 32087 prsiga 32395 sigapildsys 32426 dya2iocuni 32548 fiunelcarsg 32581 carsgclctunlem1 32582 carsgclctunlem3 32585 nnuni 33982 old0 34151 made0 34165 unisnif 34364 limsucncmpi 34771 heicant 35968 ovoliunnfl 35975 voliunnfl 35977 volsupnfl 35978 mbfresfi 35979 stoweidlem35 43964 stoweidlem39 43968 prsal 44247 issalnnd 44272 ismeannd 44394 caragenunicl 44451 isomennd 44458 ipolub0 46696 |
Copyright terms: Public domain | W3C validator |