| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version | ||
| Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5244. (Revised by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| uni0 | ⊢ ∪ ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4350 | . 2 ⊢ ∅ ⊆ {∅} | |
| 2 | uni0b 4885 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∪ ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3902 ∅c0 4283 {csn 4576 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-dif 3905 df-ss 3919 df-nul 4284 df-sn 4577 df-uni 4860 |
| This theorem is referenced by: csbuni 4888 uniintsn 4935 iununi 5047 unisn2 5250 eqsnuniex 5299 opswap 6176 unixp0 6230 unixpid 6231 unizlim 6430 iotanul 6461 funfv 6909 dffv2 6917 1stval 7923 2ndval 7924 1stnpr 7925 2ndnpr 7926 1st0 7927 2nd0 7928 1st2val 7949 2nd2val 7950 brtpos0 8163 tpostpos 8176 nnunifi 9175 supval2 9339 sup00 9349 infeq5 9527 rankuni 9756 rankxplim3 9774 iunfictbso 10005 cflim2 10154 fin1a2lem11 10301 itunisuc 10310 itunitc 10312 ttukeylem4 10403 relexpfldd 14957 incexclem 15743 arwval 17950 dprdsn 19951 zrhval 21445 0opn 22820 indistopon 22917 mretopd 23008 hauscmplem 23322 cmpfi 23324 comppfsc 23448 alexsublem 23960 alexsubALTlem2 23964 ptcmplem2 23969 lebnumlem3 24890 old0 27801 made0 27819 locfinref 33852 prsiga 34142 sigapildsys 34173 dya2iocuni 34294 fiunelcarsg 34327 carsgclctunlem1 34328 carsgclctunlem3 34331 fissorduni 35099 fineqvnttrclselem1 35139 wevgblacfn 35151 nnuni 35769 unisnif 35965 limsucncmpi 36485 heicant 37701 ovoliunnfl 37708 voliunnfl 37710 volsupnfl 37711 mbfresfi 37712 onov0suclim 43313 stoweidlem35 46079 stoweidlem39 46083 prsal 46362 issalnnd 46389 ismeannd 46511 caragenunicl 46568 isomennd 46575 dftpos5 48911 ipolub0 49029 |
| Copyright terms: Public domain | W3C validator |