| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uni0 | Structured version Visualization version GIF version | ||
| Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Contributed by NM, 16-Sep-1993.) Remove use of ax-nul 5261. (Revised by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| uni0 | ⊢ ∪ ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4363 | . 2 ⊢ ∅ ⊆ {∅} | |
| 2 | uni0b 4897 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∪ ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3914 ∅c0 4296 {csn 4589 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3449 df-dif 3917 df-ss 3931 df-nul 4297 df-sn 4590 df-uni 4872 |
| This theorem is referenced by: csbuni 4900 uniintsn 4949 iununi 5063 unisn2 5267 eqsnuniex 5316 opswap 6202 unixp0 6256 unixpid 6257 unizlim 6457 iotanul 6489 funfv 6948 dffv2 6956 1stval 7970 2ndval 7971 1stnpr 7972 2ndnpr 7973 1st0 7974 2nd0 7975 1st2val 7996 2nd2val 7997 brtpos0 8212 tpostpos 8225 nnunifi 9238 supval2 9406 sup00 9416 infeq5 9590 rankuni 9816 rankxplim3 9834 iunfictbso 10067 cflim2 10216 fin1a2lem11 10363 itunisuc 10372 itunitc 10374 ttukeylem4 10465 relexpfldd 15016 incexclem 15802 arwval 18005 dprdsn 19968 zrhval 21417 0opn 22791 indistopon 22888 mretopd 22979 hauscmplem 23293 cmpfi 23295 comppfsc 23419 alexsublem 23931 alexsubALTlem2 23935 ptcmplem2 23940 lebnumlem3 24862 old0 27767 made0 27785 locfinref 33831 prsiga 34121 sigapildsys 34152 dya2iocuni 34274 fiunelcarsg 34307 carsgclctunlem1 34308 carsgclctunlem3 34311 wevgblacfn 35096 nnuni 35714 unisnif 35913 limsucncmpi 36433 heicant 37649 ovoliunnfl 37656 voliunnfl 37658 volsupnfl 37659 mbfresfi 37660 onov0suclim 43263 stoweidlem35 46033 stoweidlem39 46037 prsal 46316 issalnnd 46343 ismeannd 46465 caragenunicl 46522 isomennd 46529 dftpos5 48862 ipolub0 48980 |
| Copyright terms: Public domain | W3C validator |