MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uni0b Structured version   Visualization version   GIF version

Theorem uni0b 4855
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.)
Assertion
Ref Expression
uni0b ( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})

Proof of Theorem uni0b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 velsn 4573 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
21ralbii 3162 . 2 (∀𝑥𝐴 𝑥 ∈ {∅} ↔ ∀𝑥𝐴 𝑥 = ∅)
3 dfss3 3953 . 2 (𝐴 ⊆ {∅} ↔ ∀𝑥𝐴 𝑥 ∈ {∅})
4 neq0 4306 . . . 4 𝐴 = ∅ ↔ ∃𝑦 𝑦 𝐴)
5 rexcom4 3246 . . . . 5 (∃𝑥𝐴𝑦 𝑦𝑥 ↔ ∃𝑦𝑥𝐴 𝑦𝑥)
6 neq0 4306 . . . . . 6 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
76rexbii 3244 . . . . 5 (∃𝑥𝐴 ¬ 𝑥 = ∅ ↔ ∃𝑥𝐴𝑦 𝑦𝑥)
8 eluni2 4834 . . . . . 6 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
98exbii 1839 . . . . 5 (∃𝑦 𝑦 𝐴 ↔ ∃𝑦𝑥𝐴 𝑦𝑥)
105, 7, 93bitr4ri 305 . . . 4 (∃𝑦 𝑦 𝐴 ↔ ∃𝑥𝐴 ¬ 𝑥 = ∅)
11 rexnal 3235 . . . 4 (∃𝑥𝐴 ¬ 𝑥 = ∅ ↔ ¬ ∀𝑥𝐴 𝑥 = ∅)
124, 10, 113bitri 298 . . 3 𝐴 = ∅ ↔ ¬ ∀𝑥𝐴 𝑥 = ∅)
1312con4bii 322 . 2 ( 𝐴 = ∅ ↔ ∀𝑥𝐴 𝑥 = ∅)
142, 3, 133bitr4ri 305 1 ( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207   = wceq 1528  wex 1771  wcel 2105  wral 3135  wrex 3136  wss 3933  c0 4288  {csn 4557   cuni 4830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-v 3494  df-dif 3936  df-in 3940  df-ss 3949  df-nul 4289  df-sn 4558  df-uni 4831
This theorem is referenced by:  uni0c  4856  uni0  4857  fin1a2lem11  9820  zornn0g  9915  0top  21519  filconn  22419  alexsubALTlem2  22584  ordcmp  33692  unisn0  41193
  Copyright terms: Public domain W3C validator