| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uni0b | Structured version Visualization version GIF version | ||
| Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
| Ref | Expression |
|---|---|
| uni0b | ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 4587 | . . 3 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
| 2 | 1 | ralbii 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| 3 | dfss3 3918 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
| 4 | neq0 4297 | . . . 4 ⊢ (¬ ∪ 𝐴 = ∅ ↔ ∃𝑦 𝑦 ∈ ∪ 𝐴) | |
| 5 | rexcom4 3259 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 6 | neq0 4297 | . . . . . 6 ⊢ (¬ 𝑥 = ∅ ↔ ∃𝑦 𝑦 ∈ 𝑥) | |
| 7 | 6 | rexbii 3079 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥) |
| 8 | eluni2 4858 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 9 | 8 | exbii 1849 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
| 10 | 5, 7, 9 | 3bitr4ri 304 | . . . 4 ⊢ (∃𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅) |
| 11 | rexnal 3084 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 = ∅) | |
| 12 | 4, 10, 11 | 3bitri 297 | . . 3 ⊢ (¬ ∪ 𝐴 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| 13 | 12 | con4bii 321 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| 14 | 2, 3, 13 | 3bitr4ri 304 | 1 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 ∅c0 4278 {csn 4571 ∪ cuni 4854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-dif 3900 df-ss 3914 df-nul 4279 df-sn 4572 df-uni 4855 |
| This theorem is referenced by: uni0c 4881 uni0 4882 fin1a2lem11 10296 zornn0g 10391 0top 22893 filconn 23793 alexsubALTlem2 23958 ordcmp 36481 unisn0 45091 |
| Copyright terms: Public domain | W3C validator |