![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uni0b | Structured version Visualization version GIF version |
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
Ref | Expression |
---|---|
uni0b | ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4645 | . . 3 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
2 | 1 | ralbii 3091 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
3 | dfss3 3971 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
4 | neq0 4346 | . . . 4 ⊢ (¬ ∪ 𝐴 = ∅ ↔ ∃𝑦 𝑦 ∈ ∪ 𝐴) | |
5 | rexcom4 3283 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
6 | neq0 4346 | . . . . . 6 ⊢ (¬ 𝑥 = ∅ ↔ ∃𝑦 𝑦 ∈ 𝑥) | |
7 | 6 | rexbii 3092 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥) |
8 | eluni2 4913 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
9 | 8 | exbii 1848 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
10 | 5, 7, 9 | 3bitr4ri 303 | . . . 4 ⊢ (∃𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅) |
11 | rexnal 3098 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 = ∅) | |
12 | 4, 10, 11 | 3bitri 296 | . . 3 ⊢ (¬ ∪ 𝐴 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
13 | 12 | con4bii 320 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
14 | 2, 3, 13 | 3bitr4ri 303 | 1 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ∀wral 3059 ∃wrex 3068 ⊆ wss 3949 ∅c0 4323 {csn 4629 ∪ cuni 4909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-11 2152 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-v 3474 df-dif 3952 df-in 3956 df-ss 3966 df-nul 4324 df-sn 4630 df-uni 4910 |
This theorem is referenced by: uni0c 4939 uni0 4940 fin1a2lem11 10409 zornn0g 10504 0top 22708 filconn 23609 alexsubALTlem2 23774 ordcmp 35637 unisn0 44044 |
Copyright terms: Public domain | W3C validator |