Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uni0b | Structured version Visualization version GIF version |
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
Ref | Expression |
---|---|
uni0b | ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4577 | . . 3 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
2 | 1 | ralbii 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
3 | dfss3 3909 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
4 | neq0 4279 | . . . 4 ⊢ (¬ ∪ 𝐴 = ∅ ↔ ∃𝑦 𝑦 ∈ ∪ 𝐴) | |
5 | rexcom4 3233 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
6 | neq0 4279 | . . . . . 6 ⊢ (¬ 𝑥 = ∅ ↔ ∃𝑦 𝑦 ∈ 𝑥) | |
7 | 6 | rexbii 3181 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥) |
8 | eluni2 4843 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
9 | 8 | exbii 1850 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
10 | 5, 7, 9 | 3bitr4ri 304 | . . . 4 ⊢ (∃𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅) |
11 | rexnal 3169 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 = ∅) | |
12 | 4, 10, 11 | 3bitri 297 | . . 3 ⊢ (¬ ∪ 𝐴 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
13 | 12 | con4bii 321 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
14 | 2, 3, 13 | 3bitr4ri 304 | 1 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ∅c0 4256 {csn 4561 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-uni 4840 |
This theorem is referenced by: uni0c 4868 uni0 4869 fin1a2lem11 10166 zornn0g 10261 0top 22133 filconn 23034 alexsubALTlem2 23199 ordcmp 34636 unisn0 42602 |
Copyright terms: Public domain | W3C validator |