![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uni0b | Structured version Visualization version GIF version |
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
Ref | Expression |
---|---|
uni0b | ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4664 | . . 3 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
2 | 1 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
3 | dfss3 3997 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
4 | neq0 4375 | . . . 4 ⊢ (¬ ∪ 𝐴 = ∅ ↔ ∃𝑦 𝑦 ∈ ∪ 𝐴) | |
5 | rexcom4 3294 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
6 | neq0 4375 | . . . . . 6 ⊢ (¬ 𝑥 = ∅ ↔ ∃𝑦 𝑦 ∈ 𝑥) | |
7 | 6 | rexbii 3100 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥) |
8 | eluni2 4935 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
9 | 8 | exbii 1846 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
10 | 5, 7, 9 | 3bitr4ri 304 | . . . 4 ⊢ (∃𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅) |
11 | rexnal 3106 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 = ∅) | |
12 | 4, 10, 11 | 3bitri 297 | . . 3 ⊢ (¬ ∪ 𝐴 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
13 | 12 | con4bii 321 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
14 | 2, 3, 13 | 3bitr4ri 304 | 1 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 {csn 4648 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-sn 4649 df-uni 4932 |
This theorem is referenced by: uni0c 4958 uni0 4959 fin1a2lem11 10479 zornn0g 10574 0top 23011 filconn 23912 alexsubALTlem2 24077 ordcmp 36413 unisn0 44956 |
Copyright terms: Public domain | W3C validator |