MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0iin Structured version   Visualization version   GIF version

Theorem 0iin 4998
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
0iin 𝑥 ∈ ∅ 𝐴 = V

Proof of Theorem 0iin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iin 4933 . 2 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦𝐴}
2 vex 3435 . . . 4 𝑦 ∈ V
3 ral0 4449 . . . 4 𝑥 ∈ ∅ 𝑦𝐴
42, 32th 263 . . 3 (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦𝐴)
54abbi2i 2881 . 2 V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦𝐴}
61, 5eqtr4i 2771 1 𝑥 ∈ ∅ 𝐴 = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2110  {cab 2717  wral 3066  Vcvv 3431  c0 4262   ciin 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-v 3433  df-dif 3895  df-nul 4263  df-iin 4933
This theorem is referenced by:  iinrab2  5004  iinvdif  5014  riin0  5016  iin0  5288  xpriindi  5744  cmpfi  22557  ptbasfi  22730  pol0N  37919
  Copyright terms: Public domain W3C validator