Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0iin | Structured version Visualization version GIF version |
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
0iin | ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 4933 | . 2 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} | |
2 | vex 3435 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | ral0 4449 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
4 | 2, 3 | 2th 263 | . . 3 ⊢ (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴) |
5 | 4 | abbi2i 2881 | . 2 ⊢ V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} |
6 | 1, 5 | eqtr4i 2771 | 1 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2110 {cab 2717 ∀wral 3066 Vcvv 3431 ∅c0 4262 ∩ ciin 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-v 3433 df-dif 3895 df-nul 4263 df-iin 4933 |
This theorem is referenced by: iinrab2 5004 iinvdif 5014 riin0 5016 iin0 5288 xpriindi 5744 cmpfi 22557 ptbasfi 22730 pol0N 37919 |
Copyright terms: Public domain | W3C validator |