| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0iin | Structured version Visualization version GIF version | ||
| Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.) |
| Ref | Expression |
|---|---|
| 0iin | ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 4961 | . 2 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} | |
| 2 | vex 3454 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | ral0 4479 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
| 4 | 2, 3 | 2th 264 | . . 3 ⊢ (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴) |
| 5 | 4 | eqabi 2864 | . 2 ⊢ V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} |
| 6 | 1, 5 | eqtr4i 2756 | 1 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 Vcvv 3450 ∅c0 4299 ∩ ciin 4959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-dif 3920 df-nul 4300 df-iin 4961 |
| This theorem is referenced by: iinrab2 5037 iinvdif 5047 riin0 5049 iin0 5320 xpriindi 5803 cmpfi 23302 ptbasfi 23475 pol0N 39910 |
| Copyright terms: Public domain | W3C validator |