MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0iin Structured version   Visualization version   GIF version

Theorem 0iin 5061
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
0iin 𝑥 ∈ ∅ 𝐴 = V

Proof of Theorem 0iin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iin 4994 . 2 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦𝐴}
2 vex 3474 . . . 4 𝑦 ∈ V
3 ral0 4508 . . . 4 𝑥 ∈ ∅ 𝑦𝐴
42, 32th 264 . . 3 (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦𝐴)
54eqabi 2865 . 2 V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦𝐴}
61, 5eqtr4i 2759 1 𝑥 ∈ ∅ 𝐴 = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  {cab 2705  wral 3057  Vcvv 3470  c0 4318   ciin 4992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-v 3472  df-dif 3948  df-nul 4319  df-iin 4994
This theorem is referenced by:  iinrab2  5067  iinvdif  5077  riin0  5079  iin0  5356  xpriindi  5833  cmpfi  23305  ptbasfi  23478  pol0N  39376
  Copyright terms: Public domain W3C validator