![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0iin | Structured version Visualization version GIF version |
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
0iin | ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 5018 | . 2 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} | |
2 | vex 3492 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | ral0 4536 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
4 | 2, 3 | 2th 264 | . . 3 ⊢ (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴) |
5 | 4 | eqabi 2880 | . 2 ⊢ V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} |
6 | 1, 5 | eqtr4i 2771 | 1 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 Vcvv 3488 ∅c0 4352 ∩ ciin 5016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-dif 3979 df-nul 4353 df-iin 5018 |
This theorem is referenced by: iinrab2 5093 iinvdif 5103 riin0 5105 iin0 5380 xpriindi 5861 cmpfi 23437 ptbasfi 23610 pol0N 39866 |
Copyright terms: Public domain | W3C validator |