MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0iin Structured version   Visualization version   GIF version

Theorem 0iin 5045
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
0iin 𝑥 ∈ ∅ 𝐴 = V

Proof of Theorem 0iin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iin 4975 . 2 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦𝐴}
2 vex 3468 . . . 4 𝑦 ∈ V
3 ral0 4493 . . . 4 𝑥 ∈ ∅ 𝑦𝐴
42, 32th 264 . . 3 (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦𝐴)
54eqabi 2871 . 2 V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦𝐴}
61, 5eqtr4i 2762 1 𝑥 ∈ ∅ 𝐴 = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2714  wral 3052  Vcvv 3464  c0 4313   ciin 4973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-v 3466  df-dif 3934  df-nul 4314  df-iin 4975
This theorem is referenced by:  iinrab2  5051  iinvdif  5061  riin0  5063  iin0  5337  xpriindi  5821  cmpfi  23351  ptbasfi  23524  pol0N  39933
  Copyright terms: Public domain W3C validator