| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0iin | Structured version Visualization version GIF version | ||
| Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.) |
| Ref | Expression |
|---|---|
| 0iin | ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 4942 | . 2 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} | |
| 2 | vex 3440 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | ral0 4460 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
| 4 | 2, 3 | 2th 264 | . . 3 ⊢ (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴) |
| 5 | 4 | eqabi 2866 | . 2 ⊢ V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} |
| 6 | 1, 5 | eqtr4i 2757 | 1 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 Vcvv 3436 ∅c0 4280 ∩ ciin 4940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-dif 3900 df-nul 4281 df-iin 4942 |
| This theorem is referenced by: iinrab2 5016 iinvdif 5026 riin0 5028 iin0 5298 xpriindi 5775 cmpfi 23323 ptbasfi 23496 pol0N 39956 |
| Copyright terms: Public domain | W3C validator |