| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0iin | Structured version Visualization version GIF version | ||
| Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.) |
| Ref | Expression |
|---|---|
| 0iin | ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 4975 | . 2 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} | |
| 2 | vex 3468 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | ral0 4493 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
| 4 | 2, 3 | 2th 264 | . . 3 ⊢ (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴) |
| 5 | 4 | eqabi 2871 | . 2 ⊢ V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} |
| 6 | 1, 5 | eqtr4i 2762 | 1 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 Vcvv 3464 ∅c0 4313 ∩ ciin 4973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-v 3466 df-dif 3934 df-nul 4314 df-iin 4975 |
| This theorem is referenced by: iinrab2 5051 iinvdif 5061 riin0 5063 iin0 5337 xpriindi 5821 cmpfi 23351 ptbasfi 23524 pol0N 39933 |
| Copyright terms: Public domain | W3C validator |