Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0iin | Structured version Visualization version GIF version |
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
0iin | ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 4927 | . 2 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} | |
2 | vex 3436 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | ral0 4443 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
4 | 2, 3 | 2th 263 | . . 3 ⊢ (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴) |
5 | 4 | abbi2i 2879 | . 2 ⊢ V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} |
6 | 1, 5 | eqtr4i 2769 | 1 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 Vcvv 3432 ∅c0 4256 ∩ ciin 4925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-dif 3890 df-nul 4257 df-iin 4927 |
This theorem is referenced by: iinrab2 4999 iinvdif 5009 riin0 5011 iin0 5284 xpriindi 5745 cmpfi 22559 ptbasfi 22732 pol0N 37923 |
Copyright terms: Public domain | W3C validator |