Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsppslem Structured version   Visualization version   GIF version

Theorem mclsppslem 35588
Description: The closure is closed under application of provable pre-statements. (Compare mclsax 35574.) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclspps.d 𝐷 = (mDV‘𝑇)
mclspps.e 𝐸 = (mEx‘𝑇)
mclspps.c 𝐶 = (mCls‘𝑇)
mclspps.1 (𝜑𝑇 ∈ mFS)
mclspps.2 (𝜑𝐾𝐷)
mclspps.3 (𝜑𝐵𝐸)
mclspps.j 𝐽 = (mPPSt‘𝑇)
mclspps.l 𝐿 = (mSubst‘𝑇)
mclspps.v 𝑉 = (mVR‘𝑇)
mclspps.h 𝐻 = (mVH‘𝑇)
mclspps.w 𝑊 = (mVars‘𝑇)
mclspps.4 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽)
mclspps.5 (𝜑𝑆 ∈ ran 𝐿)
mclspps.6 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
mclspps.7 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
mclspps.8 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
mclsppslem.9 (𝜑 → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇))
mclsppslem.10 (𝜑𝑠 ∈ ran 𝐿)
mclsppslem.11 (𝜑 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)))
mclsppslem.12 (𝜑 → ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀))
Assertion
Ref Expression
mclsppslem (𝜑 → (𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)))
Distinct variable groups:   𝑚,𝑜,𝑝,𝑠,𝑣,𝐸   𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧,𝐻   𝑣,𝑉,𝑧   𝐾,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝑇,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝐿,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝐵,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝑊,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦,𝑧   𝑀,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝑚,𝑂,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑧   𝜑,𝑎,𝑏,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑚,𝑜,𝑠,𝑝)   𝐵(𝑧,𝑤)   𝐶(𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑣,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)   𝑆(𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏)   𝐽(𝑥,𝑦,𝑧,𝑤,𝑣,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)   𝐾(𝑧,𝑤)   𝑂(𝑦,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑤,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)

Proof of Theorem mclsppslem
Dummy variables 𝑡 𝑢 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mclsppslem.10 . . . 4 (𝜑𝑠 ∈ ran 𝐿)
2 mclspps.l . . . . 5 𝐿 = (mSubst‘𝑇)
3 mclspps.e . . . . 5 𝐸 = (mEx‘𝑇)
42, 3msubf 35537 . . . 4 (𝑠 ∈ ran 𝐿𝑠:𝐸𝐸)
51, 4syl 17 . . 3 (𝜑𝑠:𝐸𝐸)
6 mclspps.1 . . . . . . . 8 (𝜑𝑇 ∈ mFS)
7 eqid 2737 . . . . . . . . 9 (mAx‘𝑇) = (mAx‘𝑇)
8 eqid 2737 . . . . . . . . 9 (mStat‘𝑇) = (mStat‘𝑇)
97, 8maxsta 35559 . . . . . . . 8 (𝑇 ∈ mFS → (mAx‘𝑇) ⊆ (mStat‘𝑇))
106, 9syl 17 . . . . . . 7 (𝜑 → (mAx‘𝑇) ⊆ (mStat‘𝑇))
11 eqid 2737 . . . . . . . 8 (mPreSt‘𝑇) = (mPreSt‘𝑇)
1211, 8mstapst 35552 . . . . . . 7 (mStat‘𝑇) ⊆ (mPreSt‘𝑇)
1310, 12sstrdi 3996 . . . . . 6 (𝜑 → (mAx‘𝑇) ⊆ (mPreSt‘𝑇))
14 mclsppslem.9 . . . . . 6 (𝜑 → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇))
1513, 14sseldd 3984 . . . . 5 (𝜑 → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇))
16 mclspps.d . . . . . 6 𝐷 = (mDV‘𝑇)
1716, 3, 11elmpst 35541 . . . . 5 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑚𝐷𝑚 = 𝑚) ∧ (𝑜𝐸𝑜 ∈ Fin) ∧ 𝑝𝐸))
1815, 17sylib 218 . . . 4 (𝜑 → ((𝑚𝐷𝑚 = 𝑚) ∧ (𝑜𝐸𝑜 ∈ Fin) ∧ 𝑝𝐸))
1918simp3d 1145 . . 3 (𝜑𝑝𝐸)
205, 19ffvelcdmd 7105 . 2 (𝜑 → (𝑠𝑝) ∈ 𝐸)
21 fvco3 7008 . . . 4 ((𝑠:𝐸𝐸𝑝𝐸) → ((𝑆𝑠)‘𝑝) = (𝑆‘(𝑠𝑝)))
225, 19, 21syl2anc 584 . . 3 (𝜑 → ((𝑆𝑠)‘𝑝) = (𝑆‘(𝑠𝑝)))
23 mclspps.c . . . 4 𝐶 = (mCls‘𝑇)
24 mclspps.2 . . . 4 (𝜑𝐾𝐷)
25 mclspps.3 . . . 4 (𝜑𝐵𝐸)
26 mclspps.v . . . 4 𝑉 = (mVR‘𝑇)
27 mclspps.h . . . 4 𝐻 = (mVH‘𝑇)
28 mclspps.w . . . 4 𝑊 = (mVars‘𝑇)
29 mclspps.5 . . . . 5 (𝜑𝑆 ∈ ran 𝐿)
302msubco 35536 . . . . 5 ((𝑆 ∈ ran 𝐿𝑠 ∈ ran 𝐿) → (𝑆𝑠) ∈ ran 𝐿)
3129, 1, 30syl2anc 584 . . . 4 (𝜑 → (𝑆𝑠) ∈ ran 𝐿)
322, 3msubf 35537 . . . . . . . . 9 (𝑆 ∈ ran 𝐿𝑆:𝐸𝐸)
3329, 32syl 17 . . . . . . . 8 (𝜑𝑆:𝐸𝐸)
34 fco 6760 . . . . . . . 8 ((𝑆:𝐸𝐸𝑠:𝐸𝐸) → (𝑆𝑠):𝐸𝐸)
3533, 5, 34syl2anc 584 . . . . . . 7 (𝜑 → (𝑆𝑠):𝐸𝐸)
3635ffnd 6737 . . . . . 6 (𝜑 → (𝑆𝑠) Fn 𝐸)
3736adantr 480 . . . . 5 ((𝜑𝑐𝑜) → (𝑆𝑠) Fn 𝐸)
38 mclsppslem.11 . . . . . . . . 9 (𝜑 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)))
395ffund 6740 . . . . . . . . . 10 (𝜑 → Fun 𝑠)
4017simp2bi 1147 . . . . . . . . . . . . . 14 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) → (𝑜𝐸𝑜 ∈ Fin))
4115, 40syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑜𝐸𝑜 ∈ Fin))
4241simpld 494 . . . . . . . . . . . 12 (𝜑𝑜𝐸)
4326, 3, 27mvhf 35563 . . . . . . . . . . . . 13 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
44 frn 6743 . . . . . . . . . . . . 13 (𝐻:𝑉𝐸 → ran 𝐻𝐸)
456, 43, 443syl 18 . . . . . . . . . . . 12 (𝜑 → ran 𝐻𝐸)
4642, 45unssd 4192 . . . . . . . . . . 11 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ 𝐸)
475fdmd 6746 . . . . . . . . . . 11 (𝜑 → dom 𝑠 = 𝐸)
4846, 47sseqtrrd 4021 . . . . . . . . . 10 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ dom 𝑠)
49 funimass3 7074 . . . . . . . . . 10 ((Fun 𝑠 ∧ (𝑜 ∪ ran 𝐻) ⊆ dom 𝑠) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)) ↔ (𝑜 ∪ ran 𝐻) ⊆ (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))))
5039, 48, 49syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)) ↔ (𝑜 ∪ ran 𝐻) ⊆ (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))))
5138, 50mpbid 232 . . . . . . . 8 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ (𝑠 “ (𝑆 “ (𝐾𝐶𝐵))))
52 cnvco 5896 . . . . . . . . . 10 (𝑆𝑠) = (𝑠𝑆)
5352imaeq1i 6075 . . . . . . . . 9 ((𝑆𝑠) “ (𝐾𝐶𝐵)) = ((𝑠𝑆) “ (𝐾𝐶𝐵))
54 imaco 6271 . . . . . . . . 9 ((𝑠𝑆) “ (𝐾𝐶𝐵)) = (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))
5553, 54eqtri 2765 . . . . . . . 8 ((𝑆𝑠) “ (𝐾𝐶𝐵)) = (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))
5651, 55sseqtrrdi 4025 . . . . . . 7 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
5756unssad 4193 . . . . . 6 (𝜑𝑜 ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
5857sselda 3983 . . . . 5 ((𝜑𝑐𝑜) → 𝑐 ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
59 elpreima 7078 . . . . . 6 ((𝑆𝑠) Fn 𝐸 → (𝑐 ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)) ↔ (𝑐𝐸 ∧ ((𝑆𝑠)‘𝑐) ∈ (𝐾𝐶𝐵))))
6059simplbda 499 . . . . 5 (((𝑆𝑠) Fn 𝐸𝑐 ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵))) → ((𝑆𝑠)‘𝑐) ∈ (𝐾𝐶𝐵))
6137, 58, 60syl2anc 584 . . . 4 ((𝜑𝑐𝑜) → ((𝑆𝑠)‘𝑐) ∈ (𝐾𝐶𝐵))
6236adantr 480 . . . . 5 ((𝜑𝑡𝑉) → (𝑆𝑠) Fn 𝐸)
6356unssbd 4194 . . . . . . 7 (𝜑 → ran 𝐻 ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
6463adantr 480 . . . . . 6 ((𝜑𝑡𝑉) → ran 𝐻 ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
65 ffn 6736 . . . . . . . 8 (𝐻:𝑉𝐸𝐻 Fn 𝑉)
666, 43, 653syl 18 . . . . . . 7 (𝜑𝐻 Fn 𝑉)
67 fnfvelrn 7100 . . . . . . 7 ((𝐻 Fn 𝑉𝑡𝑉) → (𝐻𝑡) ∈ ran 𝐻)
6866, 67sylan 580 . . . . . 6 ((𝜑𝑡𝑉) → (𝐻𝑡) ∈ ran 𝐻)
6964, 68sseldd 3984 . . . . 5 ((𝜑𝑡𝑉) → (𝐻𝑡) ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
70 elpreima 7078 . . . . . 6 ((𝑆𝑠) Fn 𝐸 → ((𝐻𝑡) ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)) ↔ ((𝐻𝑡) ∈ 𝐸 ∧ ((𝑆𝑠)‘(𝐻𝑡)) ∈ (𝐾𝐶𝐵))))
7170simplbda 499 . . . . 5 (((𝑆𝑠) Fn 𝐸 ∧ (𝐻𝑡) ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵))) → ((𝑆𝑠)‘(𝐻𝑡)) ∈ (𝐾𝐶𝐵))
7262, 69, 71syl2anc 584 . . . 4 ((𝜑𝑡𝑉) → ((𝑆𝑠)‘(𝐻𝑡)) ∈ (𝐾𝐶𝐵))
735adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → 𝑠:𝐸𝐸)
746, 43syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝑉𝐸)
7574adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑐𝑚𝑑) → 𝐻:𝑉𝐸)
7618simp1d 1143 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑚𝐷𝑚 = 𝑚))
7776simpld 494 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑚𝐷)
7826, 16mdvval 35509 . . . . . . . . . . . . . . . . . . . 20 𝐷 = ((𝑉 × 𝑉) ∖ I )
79 difss 4136 . . . . . . . . . . . . . . . . . . . 20 ((𝑉 × 𝑉) ∖ I ) ⊆ (𝑉 × 𝑉)
8078, 79eqsstri 4030 . . . . . . . . . . . . . . . . . . 19 𝐷 ⊆ (𝑉 × 𝑉)
8177, 80sstrdi 3996 . . . . . . . . . . . . . . . . . 18 (𝜑𝑚 ⊆ (𝑉 × 𝑉))
8281ssbrd 5186 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑐𝑚𝑑𝑐(𝑉 × 𝑉)𝑑))
8382imp 406 . . . . . . . . . . . . . . . 16 ((𝜑𝑐𝑚𝑑) → 𝑐(𝑉 × 𝑉)𝑑)
84 brxp 5734 . . . . . . . . . . . . . . . 16 (𝑐(𝑉 × 𝑉)𝑑 ↔ (𝑐𝑉𝑑𝑉))
8583, 84sylib 218 . . . . . . . . . . . . . . 15 ((𝜑𝑐𝑚𝑑) → (𝑐𝑉𝑑𝑉))
8685simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑐𝑚𝑑) → 𝑐𝑉)
8775, 86ffvelcdmd 7105 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → (𝐻𝑐) ∈ 𝐸)
88 fvco3 7008 . . . . . . . . . . . . 13 ((𝑠:𝐸𝐸 ∧ (𝐻𝑐) ∈ 𝐸) → ((𝑆𝑠)‘(𝐻𝑐)) = (𝑆‘(𝑠‘(𝐻𝑐))))
8973, 87, 88syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → ((𝑆𝑠)‘(𝐻𝑐)) = (𝑆‘(𝑠‘(𝐻𝑐))))
9089fveq2d 6910 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) = (𝑊‘(𝑆‘(𝑠‘(𝐻𝑐)))))
916adantr 480 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → 𝑇 ∈ mFS)
9229adantr 480 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → 𝑆 ∈ ran 𝐿)
9373, 87ffvelcdmd 7105 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → (𝑠‘(𝐻𝑐)) ∈ 𝐸)
942, 3, 28, 27msubvrs 35565 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑆 ∈ ran 𝐿 ∧ (𝑠‘(𝐻𝑐)) ∈ 𝐸) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑐)))) = 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))))
9591, 92, 93, 94syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑐)))) = 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))))
9690, 95eqtrd 2777 . . . . . . . . . 10 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) = 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))))
9796eleq2d 2827 . . . . . . . . 9 ((𝜑𝑐𝑚𝑑) → (𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ↔ 𝑎 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢)))))
98 eliun 4995 . . . . . . . . 9 (𝑎 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))) ↔ ∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))))
9997, 98bitrdi 287 . . . . . . . 8 ((𝜑𝑐𝑚𝑑) → (𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ↔ ∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢)))))
10085simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑐𝑚𝑑) → 𝑑𝑉)
10175, 100ffvelcdmd 7105 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → (𝐻𝑑) ∈ 𝐸)
102 fvco3 7008 . . . . . . . . . . . . 13 ((𝑠:𝐸𝐸 ∧ (𝐻𝑑) ∈ 𝐸) → ((𝑆𝑠)‘(𝐻𝑑)) = (𝑆‘(𝑠‘(𝐻𝑑))))
10373, 101, 102syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → ((𝑆𝑠)‘(𝐻𝑑)) = (𝑆‘(𝑠‘(𝐻𝑑))))
104103fveq2d 6910 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) = (𝑊‘(𝑆‘(𝑠‘(𝐻𝑑)))))
10573, 101ffvelcdmd 7105 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → (𝑠‘(𝐻𝑑)) ∈ 𝐸)
1062, 3, 28, 27msubvrs 35565 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑆 ∈ ran 𝐿 ∧ (𝑠‘(𝐻𝑑)) ∈ 𝐸) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑑)))) = 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))))
10791, 92, 105, 106syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑑)))) = 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))))
108104, 107eqtrd 2777 . . . . . . . . . 10 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) = 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))))
109108eleq2d 2827 . . . . . . . . 9 ((𝜑𝑐𝑚𝑑) → (𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) ↔ 𝑏 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣)))))
110 eliun 4995 . . . . . . . . 9 (𝑏 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))) ↔ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))
111109, 110bitrdi 287 . . . . . . . 8 ((𝜑𝑐𝑚𝑑) → (𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) ↔ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))
11299, 111anbi12d 632 . . . . . . 7 ((𝜑𝑐𝑚𝑑) → ((𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ∧ 𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑)))) ↔ (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))))
113 reeanv 3229 . . . . . . . 8 (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) ↔ (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))
114 simpll 767 . . . . . . . . . 10 (((𝜑𝑐𝑚𝑑) ∧ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑))))) → 𝜑)
115 brxp 5734 . . . . . . . . . . . 12 (𝑢((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑))))𝑣 ↔ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))))
116 mclsppslem.12 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀))
117 breq12 5148 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑧𝑚𝑤𝑐𝑚𝑑))
118 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 = 𝑐𝑤 = 𝑑) → 𝑧 = 𝑐)
119118fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝐻𝑧) = (𝐻𝑐))
120119fveq2d 6910 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑠‘(𝐻𝑧)) = (𝑠‘(𝐻𝑐)))
121120fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑊‘(𝑠‘(𝐻𝑧))) = (𝑊‘(𝑠‘(𝐻𝑐))))
122 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 = 𝑐𝑤 = 𝑑) → 𝑤 = 𝑑)
123122fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝐻𝑤) = (𝐻𝑑))
124123fveq2d 6910 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑠‘(𝐻𝑤)) = (𝑠‘(𝐻𝑑)))
125124fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑊‘(𝑠‘(𝐻𝑤))) = (𝑊‘(𝑠‘(𝐻𝑑))))
126121, 125xpeq12d 5716 . . . . . . . . . . . . . . . . . . 19 ((𝑧 = 𝑐𝑤 = 𝑑) → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) = ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))))
127126sseq1d 4015 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 𝑐𝑤 = 𝑑) → (((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀 ↔ ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀))
128117, 127imbi12d 344 . . . . . . . . . . . . . . . . 17 ((𝑧 = 𝑐𝑤 = 𝑑) → ((𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀) ↔ (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀)))
129128spc2gv 3600 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ V ∧ 𝑑 ∈ V) → (∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀) → (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀)))
130129el2v 3487 . . . . . . . . . . . . . . 15 (∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀) → (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀))
131116, 130syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀))
132131imp 406 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀)
133132ssbrd 5186 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → (𝑢((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑))))𝑣𝑢𝑀𝑣))
134115, 133biimtrrid 243 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → ((𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))) → 𝑢𝑀𝑣))
135134imp 406 . . . . . . . . . 10 (((𝜑𝑐𝑚𝑑) ∧ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑))))) → 𝑢𝑀𝑣)
136 vex 3484 . . . . . . . . . . . . 13 𝑢 ∈ V
137 vex 3484 . . . . . . . . . . . . 13 𝑣 ∈ V
138 breq12 5148 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑥𝑀𝑦𝑢𝑀𝑣))
139 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
140139fveq2d 6910 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐻𝑥) = (𝐻𝑢))
141140fveq2d 6910 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑆‘(𝐻𝑥)) = (𝑆‘(𝐻𝑢)))
142141fveq2d 6910 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑊‘(𝑆‘(𝐻𝑥))) = (𝑊‘(𝑆‘(𝐻𝑢))))
143142eleq2d 2827 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ↔ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢)))))
144 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣)
145144fveq2d 6910 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐻𝑦) = (𝐻𝑣))
146145fveq2d 6910 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑆‘(𝐻𝑦)) = (𝑆‘(𝐻𝑣)))
147146fveq2d 6910 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑊‘(𝑆‘(𝐻𝑦))) = (𝑊‘(𝑆‘(𝐻𝑣))))
148147eleq2d 2827 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))) ↔ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))
149138, 143, 1483anbi123d 1438 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))) ↔ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))))
150149anbi2d 630 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) ↔ (𝜑 ∧ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))))
151150imbi1d 341 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → (((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏) ↔ ((𝜑 ∧ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))) → 𝑎𝐾𝑏)))
152 mclspps.8 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
153136, 137, 151, 152vtocl2 3566 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))) → 𝑎𝐾𝑏)
1541533exp2 1355 . . . . . . . . . . 11 (𝜑 → (𝑢𝑀𝑣 → (𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) → (𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))) → 𝑎𝐾𝑏))))
155154imp4b 421 . . . . . . . . . 10 ((𝜑𝑢𝑀𝑣) → ((𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
156114, 135, 155syl2anc 584 . . . . . . . . 9 (((𝜑𝑐𝑚𝑑) ∧ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑))))) → ((𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
157156rexlimdvva 3213 . . . . . . . 8 ((𝜑𝑐𝑚𝑑) → (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
158113, 157biimtrrid 243 . . . . . . 7 ((𝜑𝑐𝑚𝑑) → ((∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
159112, 158sylbid 240 . . . . . 6 ((𝜑𝑐𝑚𝑑) → ((𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ∧ 𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑)))) → 𝑎𝐾𝑏))
160159exp4b 430 . . . . 5 (𝜑 → (𝑐𝑚𝑑 → (𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) → (𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) → 𝑎𝐾𝑏))))
1611603imp2 1350 . . . 4 ((𝜑 ∧ (𝑐𝑚𝑑𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ∧ 𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))))) → 𝑎𝐾𝑏)
16216, 3, 23, 6, 24, 25, 7, 2, 26, 27, 28, 14, 31, 61, 72, 161mclsax 35574 . . 3 (𝜑 → ((𝑆𝑠)‘𝑝) ∈ (𝐾𝐶𝐵))
16322, 162eqeltrrd 2842 . 2 (𝜑 → (𝑆‘(𝑠𝑝)) ∈ (𝐾𝐶𝐵))
16433ffnd 6737 . . 3 (𝜑𝑆 Fn 𝐸)
165 elpreima 7078 . . 3 (𝑆 Fn 𝐸 → ((𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝑠𝑝) ∈ 𝐸 ∧ (𝑆‘(𝑠𝑝)) ∈ (𝐾𝐶𝐵))))
166164, 165syl 17 . 2 (𝜑 → ((𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝑠𝑝) ∈ 𝐸 ∧ (𝑆‘(𝑠𝑝)) ∈ (𝐾𝐶𝐵))))
16720, 163, 166mpbir2and 713 1 (𝜑 → (𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1538   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480  cdif 3948  cun 3949  wss 3951  cotp 4634   ciun 4991   class class class wbr 5143   I cid 5577   × cxp 5683  ccnv 5684  dom cdm 5685  ran crn 5686  cima 5688  ccom 5689  Fun wfun 6555   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  mVRcmvar 35466  mAxcmax 35470  mExcmex 35472  mDVcmdv 35473  mVarscmvrs 35474  mSubstcmsub 35476  mVHcmvh 35477  mPreStcmpst 35478  mStatcmsta 35480  mFScmfs 35481  mClscmcls 35482  mPPStcmpps 35483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-frmd 18862  df-vrmd 18863  df-mrex 35491  df-mex 35492  df-mdv 35493  df-mvrs 35494  df-mrsub 35495  df-msub 35496  df-mvh 35497  df-mpst 35498  df-msr 35499  df-msta 35500  df-mfs 35501  df-mcls 35502
This theorem is referenced by:  mclspps  35589
  Copyright terms: Public domain W3C validator