Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsppslem Structured version   Visualization version   GIF version

Theorem mclsppslem 32079
 Description: The closure is closed under application of provable pre-statements. (Compare mclsax 32065.) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclspps.d 𝐷 = (mDV‘𝑇)
mclspps.e 𝐸 = (mEx‘𝑇)
mclspps.c 𝐶 = (mCls‘𝑇)
mclspps.1 (𝜑𝑇 ∈ mFS)
mclspps.2 (𝜑𝐾𝐷)
mclspps.3 (𝜑𝐵𝐸)
mclspps.j 𝐽 = (mPPSt‘𝑇)
mclspps.l 𝐿 = (mSubst‘𝑇)
mclspps.v 𝑉 = (mVR‘𝑇)
mclspps.h 𝐻 = (mVH‘𝑇)
mclspps.w 𝑊 = (mVars‘𝑇)
mclspps.4 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽)
mclspps.5 (𝜑𝑆 ∈ ran 𝐿)
mclspps.6 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
mclspps.7 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
mclspps.8 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
mclsppslem.9 (𝜑 → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇))
mclsppslem.10 (𝜑𝑠 ∈ ran 𝐿)
mclsppslem.11 (𝜑 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)))
mclsppslem.12 (𝜑 → ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀))
Assertion
Ref Expression
mclsppslem (𝜑 → (𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)))
Distinct variable groups:   𝑚,𝑜,𝑝,𝑠,𝑣,𝐸   𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧,𝐻   𝑣,𝑉,𝑧   𝐾,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝑇,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝐿,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝐵,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝑊,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦,𝑧   𝑀,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝑚,𝑂,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑧   𝜑,𝑎,𝑏,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑚,𝑜,𝑠,𝑝)   𝐵(𝑧,𝑤)   𝐶(𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑣,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)   𝑆(𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏)   𝐽(𝑥,𝑦,𝑧,𝑤,𝑣,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)   𝐾(𝑧,𝑤)   𝑂(𝑦,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑤,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)

Proof of Theorem mclsppslem
Dummy variables 𝑡 𝑢 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mclsppslem.10 . . . 4 (𝜑𝑠 ∈ ran 𝐿)
2 mclspps.l . . . . 5 𝐿 = (mSubst‘𝑇)
3 mclspps.e . . . . 5 𝐸 = (mEx‘𝑇)
42, 3msubf 32028 . . . 4 (𝑠 ∈ ran 𝐿𝑠:𝐸𝐸)
51, 4syl 17 . . 3 (𝜑𝑠:𝐸𝐸)
6 mclspps.1 . . . . . . . 8 (𝜑𝑇 ∈ mFS)
7 eqid 2777 . . . . . . . . 9 (mAx‘𝑇) = (mAx‘𝑇)
8 eqid 2777 . . . . . . . . 9 (mStat‘𝑇) = (mStat‘𝑇)
97, 8maxsta 32050 . . . . . . . 8 (𝑇 ∈ mFS → (mAx‘𝑇) ⊆ (mStat‘𝑇))
106, 9syl 17 . . . . . . 7 (𝜑 → (mAx‘𝑇) ⊆ (mStat‘𝑇))
11 eqid 2777 . . . . . . . 8 (mPreSt‘𝑇) = (mPreSt‘𝑇)
1211, 8mstapst 32043 . . . . . . 7 (mStat‘𝑇) ⊆ (mPreSt‘𝑇)
1310, 12syl6ss 3832 . . . . . 6 (𝜑 → (mAx‘𝑇) ⊆ (mPreSt‘𝑇))
14 mclsppslem.9 . . . . . 6 (𝜑 → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇))
1513, 14sseldd 3821 . . . . 5 (𝜑 → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇))
16 mclspps.d . . . . . 6 𝐷 = (mDV‘𝑇)
1716, 3, 11elmpst 32032 . . . . 5 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑚𝐷𝑚 = 𝑚) ∧ (𝑜𝐸𝑜 ∈ Fin) ∧ 𝑝𝐸))
1815, 17sylib 210 . . . 4 (𝜑 → ((𝑚𝐷𝑚 = 𝑚) ∧ (𝑜𝐸𝑜 ∈ Fin) ∧ 𝑝𝐸))
1918simp3d 1135 . . 3 (𝜑𝑝𝐸)
205, 19ffvelrnd 6624 . 2 (𝜑 → (𝑠𝑝) ∈ 𝐸)
21 fvco3 6535 . . . 4 ((𝑠:𝐸𝐸𝑝𝐸) → ((𝑆𝑠)‘𝑝) = (𝑆‘(𝑠𝑝)))
225, 19, 21syl2anc 579 . . 3 (𝜑 → ((𝑆𝑠)‘𝑝) = (𝑆‘(𝑠𝑝)))
23 mclspps.c . . . 4 𝐶 = (mCls‘𝑇)
24 mclspps.2 . . . 4 (𝜑𝐾𝐷)
25 mclspps.3 . . . 4 (𝜑𝐵𝐸)
26 mclspps.v . . . 4 𝑉 = (mVR‘𝑇)
27 mclspps.h . . . 4 𝐻 = (mVH‘𝑇)
28 mclspps.w . . . 4 𝑊 = (mVars‘𝑇)
29 mclspps.5 . . . . 5 (𝜑𝑆 ∈ ran 𝐿)
302msubco 32027 . . . . 5 ((𝑆 ∈ ran 𝐿𝑠 ∈ ran 𝐿) → (𝑆𝑠) ∈ ran 𝐿)
3129, 1, 30syl2anc 579 . . . 4 (𝜑 → (𝑆𝑠) ∈ ran 𝐿)
322, 3msubf 32028 . . . . . . . . 9 (𝑆 ∈ ran 𝐿𝑆:𝐸𝐸)
3329, 32syl 17 . . . . . . . 8 (𝜑𝑆:𝐸𝐸)
34 fco 6308 . . . . . . . 8 ((𝑆:𝐸𝐸𝑠:𝐸𝐸) → (𝑆𝑠):𝐸𝐸)
3533, 5, 34syl2anc 579 . . . . . . 7 (𝜑 → (𝑆𝑠):𝐸𝐸)
3635ffnd 6292 . . . . . 6 (𝜑 → (𝑆𝑠) Fn 𝐸)
3736adantr 474 . . . . 5 ((𝜑𝑐𝑜) → (𝑆𝑠) Fn 𝐸)
38 mclsppslem.11 . . . . . . . . 9 (𝜑 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)))
395ffund 6295 . . . . . . . . . 10 (𝜑 → Fun 𝑠)
4017simp2bi 1137 . . . . . . . . . . . . . 14 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) → (𝑜𝐸𝑜 ∈ Fin))
4115, 40syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑜𝐸𝑜 ∈ Fin))
4241simpld 490 . . . . . . . . . . . 12 (𝜑𝑜𝐸)
4326, 3, 27mvhf 32054 . . . . . . . . . . . . 13 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
44 frn 6297 . . . . . . . . . . . . 13 (𝐻:𝑉𝐸 → ran 𝐻𝐸)
456, 43, 443syl 18 . . . . . . . . . . . 12 (𝜑 → ran 𝐻𝐸)
4642, 45unssd 4011 . . . . . . . . . . 11 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ 𝐸)
475fdmd 6300 . . . . . . . . . . 11 (𝜑 → dom 𝑠 = 𝐸)
4846, 47sseqtr4d 3860 . . . . . . . . . 10 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ dom 𝑠)
49 funimass3 6596 . . . . . . . . . 10 ((Fun 𝑠 ∧ (𝑜 ∪ ran 𝐻) ⊆ dom 𝑠) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)) ↔ (𝑜 ∪ ran 𝐻) ⊆ (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))))
5039, 48, 49syl2anc 579 . . . . . . . . 9 (𝜑 → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)) ↔ (𝑜 ∪ ran 𝐻) ⊆ (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))))
5138, 50mpbid 224 . . . . . . . 8 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ (𝑠 “ (𝑆 “ (𝐾𝐶𝐵))))
52 cnvco 5553 . . . . . . . . . 10 (𝑆𝑠) = (𝑠𝑆)
5352imaeq1i 5717 . . . . . . . . 9 ((𝑆𝑠) “ (𝐾𝐶𝐵)) = ((𝑠𝑆) “ (𝐾𝐶𝐵))
54 imaco 5894 . . . . . . . . 9 ((𝑠𝑆) “ (𝐾𝐶𝐵)) = (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))
5553, 54eqtri 2801 . . . . . . . 8 ((𝑆𝑠) “ (𝐾𝐶𝐵)) = (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))
5651, 55syl6sseqr 3870 . . . . . . 7 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
5756unssad 4012 . . . . . 6 (𝜑𝑜 ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
5857sselda 3820 . . . . 5 ((𝜑𝑐𝑜) → 𝑐 ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
59 elpreima 6600 . . . . . 6 ((𝑆𝑠) Fn 𝐸 → (𝑐 ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)) ↔ (𝑐𝐸 ∧ ((𝑆𝑠)‘𝑐) ∈ (𝐾𝐶𝐵))))
6059simplbda 495 . . . . 5 (((𝑆𝑠) Fn 𝐸𝑐 ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵))) → ((𝑆𝑠)‘𝑐) ∈ (𝐾𝐶𝐵))
6137, 58, 60syl2anc 579 . . . 4 ((𝜑𝑐𝑜) → ((𝑆𝑠)‘𝑐) ∈ (𝐾𝐶𝐵))
6236adantr 474 . . . . 5 ((𝜑𝑡𝑉) → (𝑆𝑠) Fn 𝐸)
6356unssbd 4013 . . . . . . 7 (𝜑 → ran 𝐻 ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
6463adantr 474 . . . . . 6 ((𝜑𝑡𝑉) → ran 𝐻 ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
65 ffn 6291 . . . . . . . 8 (𝐻:𝑉𝐸𝐻 Fn 𝑉)
666, 43, 653syl 18 . . . . . . 7 (𝜑𝐻 Fn 𝑉)
67 fnfvelrn 6620 . . . . . . 7 ((𝐻 Fn 𝑉𝑡𝑉) → (𝐻𝑡) ∈ ran 𝐻)
6866, 67sylan 575 . . . . . 6 ((𝜑𝑡𝑉) → (𝐻𝑡) ∈ ran 𝐻)
6964, 68sseldd 3821 . . . . 5 ((𝜑𝑡𝑉) → (𝐻𝑡) ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
70 elpreima 6600 . . . . . 6 ((𝑆𝑠) Fn 𝐸 → ((𝐻𝑡) ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)) ↔ ((𝐻𝑡) ∈ 𝐸 ∧ ((𝑆𝑠)‘(𝐻𝑡)) ∈ (𝐾𝐶𝐵))))
7170simplbda 495 . . . . 5 (((𝑆𝑠) Fn 𝐸 ∧ (𝐻𝑡) ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵))) → ((𝑆𝑠)‘(𝐻𝑡)) ∈ (𝐾𝐶𝐵))
7262, 69, 71syl2anc 579 . . . 4 ((𝜑𝑡𝑉) → ((𝑆𝑠)‘(𝐻𝑡)) ∈ (𝐾𝐶𝐵))
735adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → 𝑠:𝐸𝐸)
746, 43syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝑉𝐸)
7574adantr 474 . . . . . . . . . . . . . 14 ((𝜑𝑐𝑚𝑑) → 𝐻:𝑉𝐸)
7618simp1d 1133 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑚𝐷𝑚 = 𝑚))
7776simpld 490 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑚𝐷)
7826, 16mdvval 32000 . . . . . . . . . . . . . . . . . . . 20 𝐷 = ((𝑉 × 𝑉) ∖ I )
79 difss 3959 . . . . . . . . . . . . . . . . . . . 20 ((𝑉 × 𝑉) ∖ I ) ⊆ (𝑉 × 𝑉)
8078, 79eqsstri 3853 . . . . . . . . . . . . . . . . . . 19 𝐷 ⊆ (𝑉 × 𝑉)
8177, 80syl6ss 3832 . . . . . . . . . . . . . . . . . 18 (𝜑𝑚 ⊆ (𝑉 × 𝑉))
8281ssbrd 4929 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑐𝑚𝑑𝑐(𝑉 × 𝑉)𝑑))
8382imp 397 . . . . . . . . . . . . . . . 16 ((𝜑𝑐𝑚𝑑) → 𝑐(𝑉 × 𝑉)𝑑)
84 brxp 5401 . . . . . . . . . . . . . . . 16 (𝑐(𝑉 × 𝑉)𝑑 ↔ (𝑐𝑉𝑑𝑉))
8583, 84sylib 210 . . . . . . . . . . . . . . 15 ((𝜑𝑐𝑚𝑑) → (𝑐𝑉𝑑𝑉))
8685simpld 490 . . . . . . . . . . . . . 14 ((𝜑𝑐𝑚𝑑) → 𝑐𝑉)
8775, 86ffvelrnd 6624 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → (𝐻𝑐) ∈ 𝐸)
88 fvco3 6535 . . . . . . . . . . . . 13 ((𝑠:𝐸𝐸 ∧ (𝐻𝑐) ∈ 𝐸) → ((𝑆𝑠)‘(𝐻𝑐)) = (𝑆‘(𝑠‘(𝐻𝑐))))
8973, 87, 88syl2anc 579 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → ((𝑆𝑠)‘(𝐻𝑐)) = (𝑆‘(𝑠‘(𝐻𝑐))))
9089fveq2d 6450 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) = (𝑊‘(𝑆‘(𝑠‘(𝐻𝑐)))))
916adantr 474 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → 𝑇 ∈ mFS)
9229adantr 474 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → 𝑆 ∈ ran 𝐿)
9373, 87ffvelrnd 6624 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → (𝑠‘(𝐻𝑐)) ∈ 𝐸)
942, 3, 28, 27msubvrs 32056 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑆 ∈ ran 𝐿 ∧ (𝑠‘(𝐻𝑐)) ∈ 𝐸) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑐)))) = 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))))
9591, 92, 93, 94syl3anc 1439 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑐)))) = 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))))
9690, 95eqtrd 2813 . . . . . . . . . 10 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) = 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))))
9796eleq2d 2844 . . . . . . . . 9 ((𝜑𝑐𝑚𝑑) → (𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ↔ 𝑎 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢)))))
98 eliun 4757 . . . . . . . . 9 (𝑎 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))) ↔ ∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))))
9997, 98syl6bb 279 . . . . . . . 8 ((𝜑𝑐𝑚𝑑) → (𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ↔ ∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢)))))
10085simprd 491 . . . . . . . . . . . . . 14 ((𝜑𝑐𝑚𝑑) → 𝑑𝑉)
10175, 100ffvelrnd 6624 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → (𝐻𝑑) ∈ 𝐸)
102 fvco3 6535 . . . . . . . . . . . . 13 ((𝑠:𝐸𝐸 ∧ (𝐻𝑑) ∈ 𝐸) → ((𝑆𝑠)‘(𝐻𝑑)) = (𝑆‘(𝑠‘(𝐻𝑑))))
10373, 101, 102syl2anc 579 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → ((𝑆𝑠)‘(𝐻𝑑)) = (𝑆‘(𝑠‘(𝐻𝑑))))
104103fveq2d 6450 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) = (𝑊‘(𝑆‘(𝑠‘(𝐻𝑑)))))
10573, 101ffvelrnd 6624 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → (𝑠‘(𝐻𝑑)) ∈ 𝐸)
1062, 3, 28, 27msubvrs 32056 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑆 ∈ ran 𝐿 ∧ (𝑠‘(𝐻𝑑)) ∈ 𝐸) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑑)))) = 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))))
10791, 92, 105, 106syl3anc 1439 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑑)))) = 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))))
108104, 107eqtrd 2813 . . . . . . . . . 10 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) = 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))))
109108eleq2d 2844 . . . . . . . . 9 ((𝜑𝑐𝑚𝑑) → (𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) ↔ 𝑏 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣)))))
110 eliun 4757 . . . . . . . . 9 (𝑏 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))) ↔ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))
111109, 110syl6bb 279 . . . . . . . 8 ((𝜑𝑐𝑚𝑑) → (𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) ↔ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))
11299, 111anbi12d 624 . . . . . . 7 ((𝜑𝑐𝑚𝑑) → ((𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ∧ 𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑)))) ↔ (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))))
113 reeanv 3292 . . . . . . . 8 (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) ↔ (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))
114 simpll 757 . . . . . . . . . 10 (((𝜑𝑐𝑚𝑑) ∧ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑))))) → 𝜑)
115 brxp 5401 . . . . . . . . . . . 12 (𝑢((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑))))𝑣 ↔ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))))
116 mclsppslem.12 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀))
117 vex 3400 . . . . . . . . . . . . . . . 16 𝑐 ∈ V
118 vex 3400 . . . . . . . . . . . . . . . 16 𝑑 ∈ V
119 breq12 4891 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑧𝑚𝑤𝑐𝑚𝑑))
120 simpl 476 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 = 𝑐𝑤 = 𝑑) → 𝑧 = 𝑐)
121120fveq2d 6450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝐻𝑧) = (𝐻𝑐))
122121fveq2d 6450 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑠‘(𝐻𝑧)) = (𝑠‘(𝐻𝑐)))
123122fveq2d 6450 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑊‘(𝑠‘(𝐻𝑧))) = (𝑊‘(𝑠‘(𝐻𝑐))))
124 simpr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 = 𝑐𝑤 = 𝑑) → 𝑤 = 𝑑)
125124fveq2d 6450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝐻𝑤) = (𝐻𝑑))
126125fveq2d 6450 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑠‘(𝐻𝑤)) = (𝑠‘(𝐻𝑑)))
127126fveq2d 6450 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑊‘(𝑠‘(𝐻𝑤))) = (𝑊‘(𝑠‘(𝐻𝑑))))
128123, 127xpeq12d 5386 . . . . . . . . . . . . . . . . . . 19 ((𝑧 = 𝑐𝑤 = 𝑑) → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) = ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))))
129128sseq1d 3850 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 𝑐𝑤 = 𝑑) → (((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀 ↔ ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀))
130119, 129imbi12d 336 . . . . . . . . . . . . . . . . 17 ((𝑧 = 𝑐𝑤 = 𝑑) → ((𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀) ↔ (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀)))
131130spc2gv 3497 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ V ∧ 𝑑 ∈ V) → (∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀) → (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀)))
132117, 118, 131mp2an 682 . . . . . . . . . . . . . . 15 (∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀) → (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀))
133116, 132syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀))
134133imp 397 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀)
135134ssbrd 4929 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → (𝑢((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑))))𝑣𝑢𝑀𝑣))
136115, 135syl5bir 235 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → ((𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))) → 𝑢𝑀𝑣))
137136imp 397 . . . . . . . . . 10 (((𝜑𝑐𝑚𝑑) ∧ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑))))) → 𝑢𝑀𝑣)
138 vex 3400 . . . . . . . . . . . . 13 𝑢 ∈ V
139 vex 3400 . . . . . . . . . . . . 13 𝑣 ∈ V
140 breq12 4891 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑥𝑀𝑦𝑢𝑀𝑣))
141 simpl 476 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
142141fveq2d 6450 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐻𝑥) = (𝐻𝑢))
143142fveq2d 6450 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑆‘(𝐻𝑥)) = (𝑆‘(𝐻𝑢)))
144143fveq2d 6450 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑊‘(𝑆‘(𝐻𝑥))) = (𝑊‘(𝑆‘(𝐻𝑢))))
145144eleq2d 2844 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ↔ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢)))))
146 simpr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣)
147146fveq2d 6450 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐻𝑦) = (𝐻𝑣))
148147fveq2d 6450 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑆‘(𝐻𝑦)) = (𝑆‘(𝐻𝑣)))
149148fveq2d 6450 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑊‘(𝑆‘(𝐻𝑦))) = (𝑊‘(𝑆‘(𝐻𝑣))))
150149eleq2d 2844 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))) ↔ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))
151140, 145, 1503anbi123d 1509 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))) ↔ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))))
152151anbi2d 622 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) ↔ (𝜑 ∧ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))))
153152imbi1d 333 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → (((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏) ↔ ((𝜑 ∧ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))) → 𝑎𝐾𝑏)))
154 mclspps.8 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
155138, 139, 153, 154vtocl2 3461 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))) → 𝑎𝐾𝑏)
1561553exp2 1416 . . . . . . . . . . 11 (𝜑 → (𝑢𝑀𝑣 → (𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) → (𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))) → 𝑎𝐾𝑏))))
157156imp4b 414 . . . . . . . . . 10 ((𝜑𝑢𝑀𝑣) → ((𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
158114, 137, 157syl2anc 579 . . . . . . . . 9 (((𝜑𝑐𝑚𝑑) ∧ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑))))) → ((𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
159158rexlimdvva 3220 . . . . . . . 8 ((𝜑𝑐𝑚𝑑) → (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
160113, 159syl5bir 235 . . . . . . 7 ((𝜑𝑐𝑚𝑑) → ((∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
161112, 160sylbid 232 . . . . . 6 ((𝜑𝑐𝑚𝑑) → ((𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ∧ 𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑)))) → 𝑎𝐾𝑏))
162161exp4b 423 . . . . 5 (𝜑 → (𝑐𝑚𝑑 → (𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) → (𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) → 𝑎𝐾𝑏))))
1631623imp2 1411 . . . 4 ((𝜑 ∧ (𝑐𝑚𝑑𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ∧ 𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))))) → 𝑎𝐾𝑏)
16416, 3, 23, 6, 24, 25, 7, 2, 26, 27, 28, 14, 31, 61, 72, 163mclsax 32065 . . 3 (𝜑 → ((𝑆𝑠)‘𝑝) ∈ (𝐾𝐶𝐵))
16522, 164eqeltrrd 2859 . 2 (𝜑 → (𝑆‘(𝑠𝑝)) ∈ (𝐾𝐶𝐵))
16633ffnd 6292 . . 3 (𝜑𝑆 Fn 𝐸)
167 elpreima 6600 . . 3 (𝑆 Fn 𝐸 → ((𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝑠𝑝) ∈ 𝐸 ∧ (𝑆‘(𝑠𝑝)) ∈ (𝐾𝐶𝐵))))
168166, 167syl 17 . 2 (𝜑 → ((𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝑠𝑝) ∈ 𝐸 ∧ (𝑆‘(𝑠𝑝)) ∈ (𝐾𝐶𝐵))))
16920, 165, 168mpbir2and 703 1 (𝜑 → (𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1071  ∀wal 1599   = wceq 1601   ∈ wcel 2106  ∃wrex 3090  Vcvv 3397   ∖ cdif 3788   ∪ cun 3789   ⊆ wss 3791  ⟨cotp 4405  ∪ ciun 4753   class class class wbr 4886   I cid 5260   × cxp 5353  ◡ccnv 5354  dom cdm 5355  ran crn 5356   “ cima 5358   ∘ ccom 5359  Fun wfun 6129   Fn wfn 6130  ⟶wf 6131  ‘cfv 6135  (class class class)co 6922  Fincfn 8241  mVRcmvar 31957  mAxcmax 31961  mExcmex 31963  mDVcmdv 31964  mVarscmvrs 31965  mSubstcmsub 31967  mVHcmvh 31968  mPreStcmpst 31969  mStatcmsta 31971  mFScmfs 31972  mClscmcls 31973  mPPStcmpps 31974 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-ot 4406  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-seq 13120  df-hash 13436  df-word 13600  df-lsw 13653  df-concat 13661  df-s1 13686  df-substr 13731  df-pfx 13780  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-0g 16488  df-gsum 16489  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-frmd 17773  df-vrmd 17774  df-mrex 31982  df-mex 31983  df-mdv 31984  df-mvrs 31985  df-mrsub 31986  df-msub 31987  df-mvh 31988  df-mpst 31989  df-msr 31990  df-msta 31991  df-mfs 31992  df-mcls 31993 This theorem is referenced by:  mclspps  32080
 Copyright terms: Public domain W3C validator