Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsppslem Structured version   Visualization version   GIF version

Theorem mclsppslem 32943
Description: The closure is closed under application of provable pre-statements. (Compare mclsax 32929.) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclspps.d 𝐷 = (mDV‘𝑇)
mclspps.e 𝐸 = (mEx‘𝑇)
mclspps.c 𝐶 = (mCls‘𝑇)
mclspps.1 (𝜑𝑇 ∈ mFS)
mclspps.2 (𝜑𝐾𝐷)
mclspps.3 (𝜑𝐵𝐸)
mclspps.j 𝐽 = (mPPSt‘𝑇)
mclspps.l 𝐿 = (mSubst‘𝑇)
mclspps.v 𝑉 = (mVR‘𝑇)
mclspps.h 𝐻 = (mVH‘𝑇)
mclspps.w 𝑊 = (mVars‘𝑇)
mclspps.4 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽)
mclspps.5 (𝜑𝑆 ∈ ran 𝐿)
mclspps.6 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
mclspps.7 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
mclspps.8 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
mclsppslem.9 (𝜑 → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇))
mclsppslem.10 (𝜑𝑠 ∈ ran 𝐿)
mclsppslem.11 (𝜑 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)))
mclsppslem.12 (𝜑 → ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀))
Assertion
Ref Expression
mclsppslem (𝜑 → (𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)))
Distinct variable groups:   𝑚,𝑜,𝑝,𝑠,𝑣,𝐸   𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧,𝐻   𝑣,𝑉,𝑧   𝐾,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝑇,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝐿,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝐵,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝑊,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦,𝑧   𝑀,𝑎,𝑏,𝑚,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑦,𝑧   𝑚,𝑂,𝑜,𝑝,𝑠,𝑣,𝑤,𝑥,𝑧   𝜑,𝑎,𝑏,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑚,𝑜,𝑠,𝑝)   𝐵(𝑧,𝑤)   𝐶(𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑣,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)   𝑆(𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏)   𝐽(𝑥,𝑦,𝑧,𝑤,𝑣,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)   𝐾(𝑧,𝑤)   𝑂(𝑦,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑤,𝑚,𝑜,𝑠,𝑝,𝑎,𝑏)

Proof of Theorem mclsppslem
Dummy variables 𝑡 𝑢 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mclsppslem.10 . . . 4 (𝜑𝑠 ∈ ran 𝐿)
2 mclspps.l . . . . 5 𝐿 = (mSubst‘𝑇)
3 mclspps.e . . . . 5 𝐸 = (mEx‘𝑇)
42, 3msubf 32892 . . . 4 (𝑠 ∈ ran 𝐿𝑠:𝐸𝐸)
51, 4syl 17 . . 3 (𝜑𝑠:𝐸𝐸)
6 mclspps.1 . . . . . . . 8 (𝜑𝑇 ∈ mFS)
7 eqid 2798 . . . . . . . . 9 (mAx‘𝑇) = (mAx‘𝑇)
8 eqid 2798 . . . . . . . . 9 (mStat‘𝑇) = (mStat‘𝑇)
97, 8maxsta 32914 . . . . . . . 8 (𝑇 ∈ mFS → (mAx‘𝑇) ⊆ (mStat‘𝑇))
106, 9syl 17 . . . . . . 7 (𝜑 → (mAx‘𝑇) ⊆ (mStat‘𝑇))
11 eqid 2798 . . . . . . . 8 (mPreSt‘𝑇) = (mPreSt‘𝑇)
1211, 8mstapst 32907 . . . . . . 7 (mStat‘𝑇) ⊆ (mPreSt‘𝑇)
1310, 12sstrdi 3927 . . . . . 6 (𝜑 → (mAx‘𝑇) ⊆ (mPreSt‘𝑇))
14 mclsppslem.9 . . . . . 6 (𝜑 → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇))
1513, 14sseldd 3916 . . . . 5 (𝜑 → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇))
16 mclspps.d . . . . . 6 𝐷 = (mDV‘𝑇)
1716, 3, 11elmpst 32896 . . . . 5 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑚𝐷𝑚 = 𝑚) ∧ (𝑜𝐸𝑜 ∈ Fin) ∧ 𝑝𝐸))
1815, 17sylib 221 . . . 4 (𝜑 → ((𝑚𝐷𝑚 = 𝑚) ∧ (𝑜𝐸𝑜 ∈ Fin) ∧ 𝑝𝐸))
1918simp3d 1141 . . 3 (𝜑𝑝𝐸)
205, 19ffvelrnd 6829 . 2 (𝜑 → (𝑠𝑝) ∈ 𝐸)
21 fvco3 6737 . . . 4 ((𝑠:𝐸𝐸𝑝𝐸) → ((𝑆𝑠)‘𝑝) = (𝑆‘(𝑠𝑝)))
225, 19, 21syl2anc 587 . . 3 (𝜑 → ((𝑆𝑠)‘𝑝) = (𝑆‘(𝑠𝑝)))
23 mclspps.c . . . 4 𝐶 = (mCls‘𝑇)
24 mclspps.2 . . . 4 (𝜑𝐾𝐷)
25 mclspps.3 . . . 4 (𝜑𝐵𝐸)
26 mclspps.v . . . 4 𝑉 = (mVR‘𝑇)
27 mclspps.h . . . 4 𝐻 = (mVH‘𝑇)
28 mclspps.w . . . 4 𝑊 = (mVars‘𝑇)
29 mclspps.5 . . . . 5 (𝜑𝑆 ∈ ran 𝐿)
302msubco 32891 . . . . 5 ((𝑆 ∈ ran 𝐿𝑠 ∈ ran 𝐿) → (𝑆𝑠) ∈ ran 𝐿)
3129, 1, 30syl2anc 587 . . . 4 (𝜑 → (𝑆𝑠) ∈ ran 𝐿)
322, 3msubf 32892 . . . . . . . . 9 (𝑆 ∈ ran 𝐿𝑆:𝐸𝐸)
3329, 32syl 17 . . . . . . . 8 (𝜑𝑆:𝐸𝐸)
34 fco 6505 . . . . . . . 8 ((𝑆:𝐸𝐸𝑠:𝐸𝐸) → (𝑆𝑠):𝐸𝐸)
3533, 5, 34syl2anc 587 . . . . . . 7 (𝜑 → (𝑆𝑠):𝐸𝐸)
3635ffnd 6488 . . . . . 6 (𝜑 → (𝑆𝑠) Fn 𝐸)
3736adantr 484 . . . . 5 ((𝜑𝑐𝑜) → (𝑆𝑠) Fn 𝐸)
38 mclsppslem.11 . . . . . . . . 9 (𝜑 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)))
395ffund 6491 . . . . . . . . . 10 (𝜑 → Fun 𝑠)
4017simp2bi 1143 . . . . . . . . . . . . . 14 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) → (𝑜𝐸𝑜 ∈ Fin))
4115, 40syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑜𝐸𝑜 ∈ Fin))
4241simpld 498 . . . . . . . . . . . 12 (𝜑𝑜𝐸)
4326, 3, 27mvhf 32918 . . . . . . . . . . . . 13 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
44 frn 6493 . . . . . . . . . . . . 13 (𝐻:𝑉𝐸 → ran 𝐻𝐸)
456, 43, 443syl 18 . . . . . . . . . . . 12 (𝜑 → ran 𝐻𝐸)
4642, 45unssd 4113 . . . . . . . . . . 11 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ 𝐸)
475fdmd 6497 . . . . . . . . . . 11 (𝜑 → dom 𝑠 = 𝐸)
4846, 47sseqtrrd 3956 . . . . . . . . . 10 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ dom 𝑠)
49 funimass3 6801 . . . . . . . . . 10 ((Fun 𝑠 ∧ (𝑜 ∪ ran 𝐻) ⊆ dom 𝑠) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)) ↔ (𝑜 ∪ ran 𝐻) ⊆ (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))))
5039, 48, 49syl2anc 587 . . . . . . . . 9 (𝜑 → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)) ↔ (𝑜 ∪ ran 𝐻) ⊆ (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))))
5138, 50mpbid 235 . . . . . . . 8 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ (𝑠 “ (𝑆 “ (𝐾𝐶𝐵))))
52 cnvco 5720 . . . . . . . . . 10 (𝑆𝑠) = (𝑠𝑆)
5352imaeq1i 5893 . . . . . . . . 9 ((𝑆𝑠) “ (𝐾𝐶𝐵)) = ((𝑠𝑆) “ (𝐾𝐶𝐵))
54 imaco 6071 . . . . . . . . 9 ((𝑠𝑆) “ (𝐾𝐶𝐵)) = (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))
5553, 54eqtri 2821 . . . . . . . 8 ((𝑆𝑠) “ (𝐾𝐶𝐵)) = (𝑠 “ (𝑆 “ (𝐾𝐶𝐵)))
5651, 55sseqtrrdi 3966 . . . . . . 7 (𝜑 → (𝑜 ∪ ran 𝐻) ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
5756unssad 4114 . . . . . 6 (𝜑𝑜 ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
5857sselda 3915 . . . . 5 ((𝜑𝑐𝑜) → 𝑐 ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
59 elpreima 6805 . . . . . 6 ((𝑆𝑠) Fn 𝐸 → (𝑐 ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)) ↔ (𝑐𝐸 ∧ ((𝑆𝑠)‘𝑐) ∈ (𝐾𝐶𝐵))))
6059simplbda 503 . . . . 5 (((𝑆𝑠) Fn 𝐸𝑐 ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵))) → ((𝑆𝑠)‘𝑐) ∈ (𝐾𝐶𝐵))
6137, 58, 60syl2anc 587 . . . 4 ((𝜑𝑐𝑜) → ((𝑆𝑠)‘𝑐) ∈ (𝐾𝐶𝐵))
6236adantr 484 . . . . 5 ((𝜑𝑡𝑉) → (𝑆𝑠) Fn 𝐸)
6356unssbd 4115 . . . . . . 7 (𝜑 → ran 𝐻 ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
6463adantr 484 . . . . . 6 ((𝜑𝑡𝑉) → ran 𝐻 ⊆ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
65 ffn 6487 . . . . . . . 8 (𝐻:𝑉𝐸𝐻 Fn 𝑉)
666, 43, 653syl 18 . . . . . . 7 (𝜑𝐻 Fn 𝑉)
67 fnfvelrn 6825 . . . . . . 7 ((𝐻 Fn 𝑉𝑡𝑉) → (𝐻𝑡) ∈ ran 𝐻)
6866, 67sylan 583 . . . . . 6 ((𝜑𝑡𝑉) → (𝐻𝑡) ∈ ran 𝐻)
6964, 68sseldd 3916 . . . . 5 ((𝜑𝑡𝑉) → (𝐻𝑡) ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)))
70 elpreima 6805 . . . . . 6 ((𝑆𝑠) Fn 𝐸 → ((𝐻𝑡) ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵)) ↔ ((𝐻𝑡) ∈ 𝐸 ∧ ((𝑆𝑠)‘(𝐻𝑡)) ∈ (𝐾𝐶𝐵))))
7170simplbda 503 . . . . 5 (((𝑆𝑠) Fn 𝐸 ∧ (𝐻𝑡) ∈ ((𝑆𝑠) “ (𝐾𝐶𝐵))) → ((𝑆𝑠)‘(𝐻𝑡)) ∈ (𝐾𝐶𝐵))
7262, 69, 71syl2anc 587 . . . 4 ((𝜑𝑡𝑉) → ((𝑆𝑠)‘(𝐻𝑡)) ∈ (𝐾𝐶𝐵))
735adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → 𝑠:𝐸𝐸)
746, 43syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝑉𝐸)
7574adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑐𝑚𝑑) → 𝐻:𝑉𝐸)
7618simp1d 1139 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑚𝐷𝑚 = 𝑚))
7776simpld 498 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑚𝐷)
7826, 16mdvval 32864 . . . . . . . . . . . . . . . . . . . 20 𝐷 = ((𝑉 × 𝑉) ∖ I )
79 difss 4059 . . . . . . . . . . . . . . . . . . . 20 ((𝑉 × 𝑉) ∖ I ) ⊆ (𝑉 × 𝑉)
8078, 79eqsstri 3949 . . . . . . . . . . . . . . . . . . 19 𝐷 ⊆ (𝑉 × 𝑉)
8177, 80sstrdi 3927 . . . . . . . . . . . . . . . . . 18 (𝜑𝑚 ⊆ (𝑉 × 𝑉))
8281ssbrd 5073 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑐𝑚𝑑𝑐(𝑉 × 𝑉)𝑑))
8382imp 410 . . . . . . . . . . . . . . . 16 ((𝜑𝑐𝑚𝑑) → 𝑐(𝑉 × 𝑉)𝑑)
84 brxp 5565 . . . . . . . . . . . . . . . 16 (𝑐(𝑉 × 𝑉)𝑑 ↔ (𝑐𝑉𝑑𝑉))
8583, 84sylib 221 . . . . . . . . . . . . . . 15 ((𝜑𝑐𝑚𝑑) → (𝑐𝑉𝑑𝑉))
8685simpld 498 . . . . . . . . . . . . . 14 ((𝜑𝑐𝑚𝑑) → 𝑐𝑉)
8775, 86ffvelrnd 6829 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → (𝐻𝑐) ∈ 𝐸)
88 fvco3 6737 . . . . . . . . . . . . 13 ((𝑠:𝐸𝐸 ∧ (𝐻𝑐) ∈ 𝐸) → ((𝑆𝑠)‘(𝐻𝑐)) = (𝑆‘(𝑠‘(𝐻𝑐))))
8973, 87, 88syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → ((𝑆𝑠)‘(𝐻𝑐)) = (𝑆‘(𝑠‘(𝐻𝑐))))
9089fveq2d 6649 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) = (𝑊‘(𝑆‘(𝑠‘(𝐻𝑐)))))
916adantr 484 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → 𝑇 ∈ mFS)
9229adantr 484 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → 𝑆 ∈ ran 𝐿)
9373, 87ffvelrnd 6829 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → (𝑠‘(𝐻𝑐)) ∈ 𝐸)
942, 3, 28, 27msubvrs 32920 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑆 ∈ ran 𝐿 ∧ (𝑠‘(𝐻𝑐)) ∈ 𝐸) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑐)))) = 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))))
9591, 92, 93, 94syl3anc 1368 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑐)))) = 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))))
9690, 95eqtrd 2833 . . . . . . . . . 10 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) = 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))))
9796eleq2d 2875 . . . . . . . . 9 ((𝜑𝑐𝑚𝑑) → (𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ↔ 𝑎 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢)))))
98 eliun 4885 . . . . . . . . 9 (𝑎 𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))(𝑊‘(𝑆‘(𝐻𝑢))) ↔ ∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))))
9997, 98syl6bb 290 . . . . . . . 8 ((𝜑𝑐𝑚𝑑) → (𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ↔ ∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢)))))
10085simprd 499 . . . . . . . . . . . . . 14 ((𝜑𝑐𝑚𝑑) → 𝑑𝑉)
10175, 100ffvelrnd 6829 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → (𝐻𝑑) ∈ 𝐸)
102 fvco3 6737 . . . . . . . . . . . . 13 ((𝑠:𝐸𝐸 ∧ (𝐻𝑑) ∈ 𝐸) → ((𝑆𝑠)‘(𝐻𝑑)) = (𝑆‘(𝑠‘(𝐻𝑑))))
10373, 101, 102syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → ((𝑆𝑠)‘(𝐻𝑑)) = (𝑆‘(𝑠‘(𝐻𝑑))))
104103fveq2d 6649 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) = (𝑊‘(𝑆‘(𝑠‘(𝐻𝑑)))))
10573, 101ffvelrnd 6829 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → (𝑠‘(𝐻𝑑)) ∈ 𝐸)
1062, 3, 28, 27msubvrs 32920 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑆 ∈ ran 𝐿 ∧ (𝑠‘(𝐻𝑑)) ∈ 𝐸) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑑)))) = 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))))
10791, 92, 105, 106syl3anc 1368 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → (𝑊‘(𝑆‘(𝑠‘(𝐻𝑑)))) = 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))))
108104, 107eqtrd 2833 . . . . . . . . . 10 ((𝜑𝑐𝑚𝑑) → (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) = 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))))
109108eleq2d 2875 . . . . . . . . 9 ((𝜑𝑐𝑚𝑑) → (𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) ↔ 𝑏 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣)))))
110 eliun 4885 . . . . . . . . 9 (𝑏 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑊‘(𝑆‘(𝐻𝑣))) ↔ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))
111109, 110syl6bb 290 . . . . . . . 8 ((𝜑𝑐𝑚𝑑) → (𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) ↔ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))
11299, 111anbi12d 633 . . . . . . 7 ((𝜑𝑐𝑚𝑑) → ((𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ∧ 𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑)))) ↔ (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))))
113 reeanv 3320 . . . . . . . 8 (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) ↔ (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))
114 simpll 766 . . . . . . . . . 10 (((𝜑𝑐𝑚𝑑) ∧ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑))))) → 𝜑)
115 brxp 5565 . . . . . . . . . . . 12 (𝑢((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑))))𝑣 ↔ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))))
116 mclsppslem.12 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀))
117 breq12 5035 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑧𝑚𝑤𝑐𝑚𝑑))
118 simpl 486 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 = 𝑐𝑤 = 𝑑) → 𝑧 = 𝑐)
119118fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝐻𝑧) = (𝐻𝑐))
120119fveq2d 6649 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑠‘(𝐻𝑧)) = (𝑠‘(𝐻𝑐)))
121120fveq2d 6649 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑊‘(𝑠‘(𝐻𝑧))) = (𝑊‘(𝑠‘(𝐻𝑐))))
122 simpr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 = 𝑐𝑤 = 𝑑) → 𝑤 = 𝑑)
123122fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝐻𝑤) = (𝐻𝑑))
124123fveq2d 6649 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑠‘(𝐻𝑤)) = (𝑠‘(𝐻𝑑)))
125124fveq2d 6649 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑊‘(𝑠‘(𝐻𝑤))) = (𝑊‘(𝑠‘(𝐻𝑑))))
126121, 125xpeq12d 5550 . . . . . . . . . . . . . . . . . . 19 ((𝑧 = 𝑐𝑤 = 𝑑) → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) = ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))))
127126sseq1d 3946 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 𝑐𝑤 = 𝑑) → (((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀 ↔ ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀))
128117, 127imbi12d 348 . . . . . . . . . . . . . . . . 17 ((𝑧 = 𝑐𝑤 = 𝑑) → ((𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀) ↔ (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀)))
129128spc2gv 3549 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ V ∧ 𝑑 ∈ V) → (∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀) → (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀)))
130129el2v 3448 . . . . . . . . . . . . . . 15 (∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀) → (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀))
131116, 130syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑐𝑚𝑑 → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀))
132131imp 410 . . . . . . . . . . . . 13 ((𝜑𝑐𝑚𝑑) → ((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑)))) ⊆ 𝑀)
133132ssbrd 5073 . . . . . . . . . . . 12 ((𝜑𝑐𝑚𝑑) → (𝑢((𝑊‘(𝑠‘(𝐻𝑐))) × (𝑊‘(𝑠‘(𝐻𝑑))))𝑣𝑢𝑀𝑣))
134115, 133syl5bir 246 . . . . . . . . . . 11 ((𝜑𝑐𝑚𝑑) → ((𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))) → 𝑢𝑀𝑣))
135134imp 410 . . . . . . . . . 10 (((𝜑𝑐𝑚𝑑) ∧ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑))))) → 𝑢𝑀𝑣)
136 vex 3444 . . . . . . . . . . . . 13 𝑢 ∈ V
137 vex 3444 . . . . . . . . . . . . 13 𝑣 ∈ V
138 breq12 5035 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑥𝑀𝑦𝑢𝑀𝑣))
139 simpl 486 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
140139fveq2d 6649 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐻𝑥) = (𝐻𝑢))
141140fveq2d 6649 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑆‘(𝐻𝑥)) = (𝑆‘(𝐻𝑢)))
142141fveq2d 6649 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑊‘(𝑆‘(𝐻𝑥))) = (𝑊‘(𝑆‘(𝐻𝑢))))
143142eleq2d 2875 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ↔ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢)))))
144 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣)
145144fveq2d 6649 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝐻𝑦) = (𝐻𝑣))
146145fveq2d 6649 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑆‘(𝐻𝑦)) = (𝑆‘(𝐻𝑣)))
147146fveq2d 6649 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑊‘(𝑆‘(𝐻𝑦))) = (𝑊‘(𝑆‘(𝐻𝑣))))
148147eleq2d 2875 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))) ↔ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))
149138, 143, 1483anbi123d 1433 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))) ↔ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))))
150149anbi2d 631 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) ↔ (𝜑 ∧ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))))))
151150imbi1d 345 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → (((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏) ↔ ((𝜑 ∧ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))) → 𝑎𝐾𝑏)))
152 mclspps.8 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
153136, 137, 151, 152vtocl2 3509 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝑀𝑣𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))))) → 𝑎𝐾𝑏)
1541533exp2 1351 . . . . . . . . . . 11 (𝜑 → (𝑢𝑀𝑣 → (𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) → (𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣))) → 𝑎𝐾𝑏))))
155154imp4b 425 . . . . . . . . . 10 ((𝜑𝑢𝑀𝑣) → ((𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
156114, 135, 155syl2anc 587 . . . . . . . . 9 (((𝜑𝑐𝑚𝑑) ∧ (𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐))) ∧ 𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑))))) → ((𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
157156rexlimdvva 3253 . . . . . . . 8 ((𝜑𝑐𝑚𝑑) → (∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))(𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
158113, 157syl5bir 246 . . . . . . 7 ((𝜑𝑐𝑚𝑑) → ((∃𝑢 ∈ (𝑊‘(𝑠‘(𝐻𝑐)))𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑢))) ∧ ∃𝑣 ∈ (𝑊‘(𝑠‘(𝐻𝑑)))𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑣)))) → 𝑎𝐾𝑏))
159112, 158sylbid 243 . . . . . 6 ((𝜑𝑐𝑚𝑑) → ((𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ∧ 𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑)))) → 𝑎𝐾𝑏))
160159exp4b 434 . . . . 5 (𝜑 → (𝑐𝑚𝑑 → (𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) → (𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))) → 𝑎𝐾𝑏))))
1611603imp2 1346 . . . 4 ((𝜑 ∧ (𝑐𝑚𝑑𝑎 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑐))) ∧ 𝑏 ∈ (𝑊‘((𝑆𝑠)‘(𝐻𝑑))))) → 𝑎𝐾𝑏)
16216, 3, 23, 6, 24, 25, 7, 2, 26, 27, 28, 14, 31, 61, 72, 161mclsax 32929 . . 3 (𝜑 → ((𝑆𝑠)‘𝑝) ∈ (𝐾𝐶𝐵))
16322, 162eqeltrrd 2891 . 2 (𝜑 → (𝑆‘(𝑠𝑝)) ∈ (𝐾𝐶𝐵))
16433ffnd 6488 . . 3 (𝜑𝑆 Fn 𝐸)
165 elpreima 6805 . . 3 (𝑆 Fn 𝐸 → ((𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝑠𝑝) ∈ 𝐸 ∧ (𝑆‘(𝑠𝑝)) ∈ (𝐾𝐶𝐵))))
166164, 165syl 17 . 2 (𝜑 → ((𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝑠𝑝) ∈ 𝐸 ∧ (𝑆‘(𝑠𝑝)) ∈ (𝐾𝐶𝐵))))
16720, 163, 166mpbir2and 712 1 (𝜑 → (𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  cdif 3878  cun 3879  wss 3881  cotp 4533   ciun 4881   class class class wbr 5030   I cid 5424   × cxp 5517  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522  ccom 5523  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  mVRcmvar 32821  mAxcmax 32825  mExcmex 32827  mDVcmdv 32828  mVarscmvrs 32829  mSubstcmsub 32831  mVHcmvh 32832  mPreStcmpst 32833  mStatcmsta 32835  mFScmfs 32836  mClscmcls 32837  mPPStcmpps 32838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-frmd 18006  df-vrmd 18007  df-mrex 32846  df-mex 32847  df-mdv 32848  df-mvrs 32849  df-mrsub 32850  df-msub 32851  df-mvh 32852  df-mpst 32853  df-msr 32854  df-msta 32855  df-mfs 32856  df-mcls 32857
This theorem is referenced by:  mclspps  32944
  Copyright terms: Public domain W3C validator