MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfind Structured version   Visualization version   GIF version

Theorem mpfind 22014
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
mpfind.cb 𝐵 = (Base‘𝑆)
mpfind.cp + = (+g𝑆)
mpfind.ct · = (.r𝑆)
mpfind.cq 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
mpfind.ad ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
mpfind.mu ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
mpfind.wa (𝑥 = ((𝐵m 𝐼) × {𝑓}) → (𝜓𝜒))
mpfind.wb (𝑥 = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) → (𝜓𝜃))
mpfind.wc (𝑥 = 𝑓 → (𝜓𝜏))
mpfind.wd (𝑥 = 𝑔 → (𝜓𝜂))
mpfind.we (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
mpfind.wf (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
mpfind.wg (𝑥 = 𝐴 → (𝜓𝜌))
mpfind.co ((𝜑𝑓𝑅) → 𝜒)
mpfind.pr ((𝜑𝑓𝐼) → 𝜃)
mpfind.a (𝜑𝐴𝑄)
Assertion
Ref Expression
mpfind (𝜑𝜌)
Distinct variable groups:   𝜒,𝑥   𝜂,𝑥   𝜑,𝑓,𝑔   𝜓,𝑓,𝑔   𝜌,𝑥   𝜎,𝑥   𝜏,𝑥   𝜃,𝑥   𝜁,𝑥   𝑥,𝐴   𝐵,𝑓,𝑔,𝑥   𝑓,𝐼,𝑔,𝑥   + ,𝑓,𝑔,𝑥   𝑄,𝑓,𝑔   𝑅,𝑓,𝑔   𝑆,𝑓,𝑔   · ,𝑓,𝑔,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑓,𝑔)   𝜃(𝑓,𝑔)   𝜏(𝑓,𝑔)   𝜂(𝑓,𝑔)   𝜁(𝑓,𝑔)   𝜎(𝑓,𝑔)   𝜌(𝑓,𝑔)   𝐴(𝑓,𝑔)   𝑄(𝑥)   𝑅(𝑥)   𝑆(𝑥)

Proof of Theorem mpfind
Dummy variables 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpfind.a . . . . 5 (𝜑𝐴𝑄)
2 mpfind.cq . . . . 5 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
31, 2eleqtrdi 2838 . . . 4 (𝜑𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
42mpfrcl 21992 . . . . . . . 8 (𝐴𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))
51, 4syl 17 . . . . . . 7 (𝜑 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))
6 eqid 2729 . . . . . . . 8 ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅)
7 eqid 2729 . . . . . . . 8 (𝐼 mPoly (𝑆s 𝑅)) = (𝐼 mPoly (𝑆s 𝑅))
8 eqid 2729 . . . . . . . 8 (𝑆s 𝑅) = (𝑆s 𝑅)
9 eqid 2729 . . . . . . . 8 (𝑆s (𝐵m 𝐼)) = (𝑆s (𝐵m 𝐼))
10 mpfind.cb . . . . . . . 8 𝐵 = (Base‘𝑆)
116, 7, 8, 9, 10evlsrhm 21995 . . . . . . 7 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))))
12 eqid 2729 . . . . . . . 8 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(𝐼 mPoly (𝑆s 𝑅)))
13 eqid 2729 . . . . . . . 8 (Base‘(𝑆s (𝐵m 𝐼))) = (Base‘(𝑆s (𝐵m 𝐼)))
1412, 13rhmf 20394 . . . . . . 7 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
155, 11, 143syl 18 . . . . . 6 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
1615ffnd 6689 . . . . 5 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
17 fvelrnb 6921 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴))
1816, 17syl 17 . . . 4 (𝜑 → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴))
193, 18mpbid 232 . . 3 (𝜑 → ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴)
2015ffund 6692 . . . . . 6 (𝜑 → Fun ((𝐼 evalSub 𝑆)‘𝑅))
21 eqid 2729 . . . . . . 7 (Base‘(𝑆s 𝑅)) = (Base‘(𝑆s 𝑅))
22 eqid 2729 . . . . . . 7 (𝐼 mVar (𝑆s 𝑅)) = (𝐼 mVar (𝑆s 𝑅))
23 eqid 2729 . . . . . . 7 (+g‘(𝐼 mPoly (𝑆s 𝑅))) = (+g‘(𝐼 mPoly (𝑆s 𝑅)))
24 eqid 2729 . . . . . . 7 (.r‘(𝐼 mPoly (𝑆s 𝑅))) = (.r‘(𝐼 mPoly (𝑆s 𝑅)))
25 eqid 2729 . . . . . . 7 (algSc‘(𝐼 mPoly (𝑆s 𝑅))) = (algSc‘(𝐼 mPoly (𝑆s 𝑅)))
265simp1d 1142 . . . . . . . . . . . 12 (𝜑𝐼 ∈ V)
275simp2d 1143 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ CRing)
285simp3d 1144 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ (SubRing‘𝑆))
298subrgcrng 20484 . . . . . . . . . . . . . 14 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑆s 𝑅) ∈ CRing)
3027, 28, 29syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑆s 𝑅) ∈ CRing)
31 crngring 20154 . . . . . . . . . . . . 13 ((𝑆s 𝑅) ∈ CRing → (𝑆s 𝑅) ∈ Ring)
3230, 31syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑆s 𝑅) ∈ Ring)
337, 26, 32mplringd 21932 . . . . . . . . . . 11 (𝜑 → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
3433adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
35 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
36 elpreima 7030 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
3716, 36syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
3837adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
3935, 38mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
4039simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
41 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
42 elpreima 7030 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
4316, 42syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
4443adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
4541, 44mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
4645simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
4712, 23ringacl 20187 . . . . . . . . . 10 (((𝐼 mPoly (𝑆s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
4834, 40, 46, 47syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
49 rhmghm 20393 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))))
505, 11, 493syl 18 . . . . . . . . . . . . 13 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))))
5150adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))))
52 eqid 2729 . . . . . . . . . . . . 13 (+g‘(𝑆s (𝐵m 𝐼))) = (+g‘(𝑆s (𝐵m 𝐼)))
5312, 23, 52ghmlin 19153 . . . . . . . . . . . 12 ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
5451, 40, 46, 53syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
5527adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑆 ∈ CRing)
56 ovexd 7422 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝐵m 𝐼) ∈ V)
5715adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
5857, 40ffvelcdmd 7057 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ (Base‘(𝑆s (𝐵m 𝐼))))
5957, 46ffvelcdmd 7057 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ (Base‘(𝑆s (𝐵m 𝐼))))
60 mpfind.cp . . . . . . . . . . . 12 + = (+g𝑆)
619, 13, 55, 56, 58, 59, 60, 52pwsplusgval 17453 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
6254, 61eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
63 simpl 482 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝜑)
64 fnfvelrn 7052 . . . . . . . . . . . . . 14 ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
6516, 40, 64syl2an2r 685 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
6665, 2eleqtrrdi 2839 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄)
67 fvimacnvi 7024 . . . . . . . . . . . . 13 ((Fun ((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})
6820, 35, 67syl2an2r 685 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})
6966, 68jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
70 fnfvelrn 7052 . . . . . . . . . . . . . 14 ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
7116, 46, 70syl2an2r 685 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
7271, 2eleqtrrdi 2839 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄)
73 fvimacnvi 7024 . . . . . . . . . . . . 13 ((Fun ((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})
7420, 41, 73syl2an2r 685 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})
7572, 74jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
76 fvex 6871 . . . . . . . . . . . 12 (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ V
77 fvex 6871 . . . . . . . . . . . 12 (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ V
78 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄))
79 vex 3451 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
80 mpfind.wc . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑓 → (𝜓𝜏))
8179, 80elab 3646 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ {𝑥𝜓} ↔ 𝜏)
82 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓 ∈ {𝑥𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
8381, 82bitr3id 285 . . . . . . . . . . . . . . . 16 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝜏 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
8478, 83anbi12d 632 . . . . . . . . . . . . . . 15 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → ((𝑓𝑄𝜏) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
85 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄))
86 vex 3451 . . . . . . . . . . . . . . . . . 18 𝑔 ∈ V
87 mpfind.wd . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑔 → (𝜓𝜂))
8886, 87elab 3646 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ {𝑥𝜓} ↔ 𝜂)
89 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔 ∈ {𝑥𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
9088, 89bitr3id 285 . . . . . . . . . . . . . . . 16 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝜂 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
9185, 90anbi12d 632 . . . . . . . . . . . . . . 15 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → ((𝑔𝑄𝜂) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
9284, 91bi2anan9 638 . . . . . . . . . . . . . 14 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) ↔ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))))
9392anbi2d 630 . . . . . . . . . . . . 13 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) ↔ (𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))))
94 ovex 7420 . . . . . . . . . . . . . . 15 (𝑓f + 𝑔) ∈ V
95 mpfind.we . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
9694, 95elab 3646 . . . . . . . . . . . . . 14 ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ 𝜁)
97 oveq12 7396 . . . . . . . . . . . . . . 15 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓f + 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
9897eleq1d 2813 . . . . . . . . . . . . . 14 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
9996, 98bitr3id 285 . . . . . . . . . . . . 13 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜁 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
10093, 99imbi12d 344 . . . . . . . . . . . 12 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})))
101 mpfind.ad . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
10276, 77, 100, 101vtocl2 3532 . . . . . . . . . . 11 ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
10363, 69, 75, 102syl12anc 836 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
10462, 103eqeltrd 2828 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})
105 elpreima 7030 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
10616, 105syl 17 . . . . . . . . . 10 (𝜑 → ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
107106adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
10848, 104, 107mpbir2and 713 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
109108adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
11012, 24ringcl 20159 . . . . . . . . . 10 (((𝐼 mPoly (𝑆s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
11134, 40, 46, 110syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
112 eqid 2729 . . . . . . . . . . . . . . 15 (mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) = (mulGrp‘(𝐼 mPoly (𝑆s 𝑅)))
113 eqid 2729 . . . . . . . . . . . . . . 15 (mulGrp‘(𝑆s (𝐵m 𝐼))) = (mulGrp‘(𝑆s (𝐵m 𝐼)))
114112, 113rhmmhm 20388 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))))
1155, 11, 1143syl 18 . . . . . . . . . . . . 13 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))))
116115adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))))
117112, 12mgpbas 20054 . . . . . . . . . . . . 13 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(mulGrp‘(𝐼 mPoly (𝑆s 𝑅))))
118112, 24mgpplusg 20053 . . . . . . . . . . . . 13 (.r‘(𝐼 mPoly (𝑆s 𝑅))) = (+g‘(mulGrp‘(𝐼 mPoly (𝑆s 𝑅))))
119 eqid 2729 . . . . . . . . . . . . . 14 (.r‘(𝑆s (𝐵m 𝐼))) = (.r‘(𝑆s (𝐵m 𝐼)))
120113, 119mgpplusg 20053 . . . . . . . . . . . . 13 (.r‘(𝑆s (𝐵m 𝐼))) = (+g‘(mulGrp‘(𝑆s (𝐵m 𝐼))))
121117, 118, 120mhmlin 18720 . . . . . . . . . . . 12 ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
122116, 40, 46, 121syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
123 mpfind.ct . . . . . . . . . . . 12 · = (.r𝑆)
1249, 13, 55, 56, 58, 59, 123, 119pwsmulrval 17454 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
125122, 124eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
126 ovex 7420 . . . . . . . . . . . . . . 15 (𝑓f · 𝑔) ∈ V
127 mpfind.wf . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
128126, 127elab 3646 . . . . . . . . . . . . . 14 ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ 𝜎)
129 oveq12 7396 . . . . . . . . . . . . . . 15 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓f · 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
130129eleq1d 2813 . . . . . . . . . . . . . 14 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
131128, 130bitr3id 285 . . . . . . . . . . . . 13 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜎 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
13293, 131imbi12d 344 . . . . . . . . . . . 12 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})))
133 mpfind.mu . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
13476, 77, 132, 133vtocl2 3532 . . . . . . . . . . 11 ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
13563, 69, 75, 134syl12anc 836 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
136125, 135eqeltrd 2828 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})
137 elpreima 7030 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
13816, 137syl 17 . . . . . . . . . 10 (𝜑 → ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
139138adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
140111, 136, 139mpbir2and 713 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
141140adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
1427mplassa 21931 . . . . . . . . . . . . 13 ((𝐼 ∈ V ∧ (𝑆s 𝑅) ∈ CRing) → (𝐼 mPoly (𝑆s 𝑅)) ∈ AssAlg)
14326, 30, 142syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐼 mPoly (𝑆s 𝑅)) ∈ AssAlg)
144 eqid 2729 . . . . . . . . . . . . 13 (Scalar‘(𝐼 mPoly (𝑆s 𝑅))) = (Scalar‘(𝐼 mPoly (𝑆s 𝑅)))
14525, 144asclrhm 21799 . . . . . . . . . . . 12 ((𝐼 mPoly (𝑆s 𝑅)) ∈ AssAlg → (algSc‘(𝐼 mPoly (𝑆s 𝑅))) ∈ ((Scalar‘(𝐼 mPoly (𝑆s 𝑅))) RingHom (𝐼 mPoly (𝑆s 𝑅))))
146 eqid 2729 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))) = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))
147146, 12rhmf 20394 . . . . . . . . . . . 12 ((algSc‘(𝐼 mPoly (𝑆s 𝑅))) ∈ ((Scalar‘(𝐼 mPoly (𝑆s 𝑅))) RingHom (𝐼 mPoly (𝑆s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
148143, 145, 1473syl 18 . . . . . . . . . . 11 (𝜑 → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
149148adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
1507, 26, 30mplsca 21922 . . . . . . . . . . . . 13 (𝜑 → (𝑆s 𝑅) = (Scalar‘(𝐼 mPoly (𝑆s 𝑅))))
151150fveq2d 6862 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑆s 𝑅)) = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
152151eleq2d 2814 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (Base‘(𝑆s 𝑅)) ↔ 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))))
153152biimpa 476 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
154149, 153ffvelcdmd 7057 . . . . . . . . 9 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
15526adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝐼 ∈ V)
15627adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑆 ∈ CRing)
15728adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑅 ∈ (SubRing‘𝑆))
15810subrgss 20481 . . . . . . . . . . . . . 14 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
1598, 10ressbas2 17208 . . . . . . . . . . . . . 14 (𝑅𝐵𝑅 = (Base‘(𝑆s 𝑅)))
16028, 158, 1593syl 18 . . . . . . . . . . . . 13 (𝜑𝑅 = (Base‘(𝑆s 𝑅)))
161160eleq2d 2814 . . . . . . . . . . . 12 (𝜑 → (𝑖𝑅𝑖 ∈ (Base‘(𝑆s 𝑅))))
162161biimpar 477 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑖𝑅)
1636, 7, 8, 10, 25, 155, 156, 157, 162evlssca 21996 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) = ((𝐵m 𝐼) × {𝑖}))
164 mpfind.co . . . . . . . . . . . . . 14 ((𝜑𝑓𝑅) → 𝜒)
165164ralrimiva 3125 . . . . . . . . . . . . 13 (𝜑 → ∀𝑓𝑅 𝜒)
166 ovex 7420 . . . . . . . . . . . . . . . . 17 (𝐵m 𝐼) ∈ V
167 vsnex 5389 . . . . . . . . . . . . . . . . 17 {𝑓} ∈ V
168166, 167xpex 7729 . . . . . . . . . . . . . . . 16 ((𝐵m 𝐼) × {𝑓}) ∈ V
169 mpfind.wa . . . . . . . . . . . . . . . 16 (𝑥 = ((𝐵m 𝐼) × {𝑓}) → (𝜓𝜒))
170168, 169elab 3646 . . . . . . . . . . . . . . 15 (((𝐵m 𝐼) × {𝑓}) ∈ {𝑥𝜓} ↔ 𝜒)
171 sneq 4599 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑖 → {𝑓} = {𝑖})
172171xpeq2d 5668 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑖 → ((𝐵m 𝐼) × {𝑓}) = ((𝐵m 𝐼) × {𝑖}))
173172eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑓 = 𝑖 → (((𝐵m 𝐼) × {𝑓}) ∈ {𝑥𝜓} ↔ ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓}))
174170, 173bitr3id 285 . . . . . . . . . . . . . 14 (𝑓 = 𝑖 → (𝜒 ↔ ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓}))
175174cbvralvw 3215 . . . . . . . . . . . . 13 (∀𝑓𝑅 𝜒 ↔ ∀𝑖𝑅 ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
176165, 175sylib 218 . . . . . . . . . . . 12 (𝜑 → ∀𝑖𝑅 ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
177176r19.21bi 3229 . . . . . . . . . . 11 ((𝜑𝑖𝑅) → ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
178162, 177syldan 591 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
179163, 178eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})
180 elpreima 7030 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})))
18116, 180syl 17 . . . . . . . . . 10 (𝜑 → (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})))
182181adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})))
183154, 179, 182mpbir2and 713 . . . . . . . 8 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
184183adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ 𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
18526adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝐼) → 𝐼 ∈ V)
18632adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝐼) → (𝑆s 𝑅) ∈ Ring)
187 simpr 484 . . . . . . . . . 10 ((𝜑𝑖𝐼) → 𝑖𝐼)
1887, 22, 12, 185, 186, 187mvrcl 21901 . . . . . . . . 9 ((𝜑𝑖𝐼) → ((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
18927adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝐼) → 𝑆 ∈ CRing)
19028adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝐼) → 𝑅 ∈ (SubRing‘𝑆))
1916, 22, 8, 10, 185, 189, 190, 187evlsvar 21997 . . . . . . . . . 10 ((𝜑𝑖𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)))
192 mpfind.pr . . . . . . . . . . . . . 14 ((𝜑𝑓𝐼) → 𝜃)
193166mptex 7197 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ V
194 mpfind.wb . . . . . . . . . . . . . . 15 (𝑥 = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) → (𝜓𝜃))
195193, 194elab 3646 . . . . . . . . . . . . . 14 ((𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓} ↔ 𝜃)
196192, 195sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑓𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓})
197196ralrimiva 3125 . . . . . . . . . . . 12 (𝜑 → ∀𝑓𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓})
198 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑓 = 𝑖 → (𝑔𝑓) = (𝑔𝑖))
199198mpteq2dv 5201 . . . . . . . . . . . . . 14 (𝑓 = 𝑖 → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)))
200199eleq1d 2813 . . . . . . . . . . . . 13 (𝑓 = 𝑖 → ((𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓} ↔ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓}))
201200cbvralvw 3215 . . . . . . . . . . . 12 (∀𝑓𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓} ↔ ∀𝑖𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓})
202197, 201sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑖𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓})
203202r19.21bi 3229 . . . . . . . . . 10 ((𝜑𝑖𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓})
204191, 203eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑖𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})
205 elpreima 7030 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})))
20616, 205syl 17 . . . . . . . . . 10 (𝜑 → (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})))
207206adantr 480 . . . . . . . . 9 ((𝜑𝑖𝐼) → (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})))
208188, 204, 207mpbir2and 713 . . . . . . . 8 ((𝜑𝑖𝐼) → ((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
209208adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ 𝑖𝐼) → ((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
210 simpr 484 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
21126adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → 𝐼 ∈ V)
21230adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (𝑆s 𝑅) ∈ CRing)
21321, 22, 7, 23, 24, 25, 12, 109, 141, 184, 209, 210, 211, 212mplind 21977 . . . . . 6 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → 𝑦 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
214 fvimacnvi 7024 . . . . . 6 ((Fun ((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑦 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥𝜓})
21520, 213, 214syl2an2r 685 . . . . 5 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥𝜓})
216 eleq1 2816 . . . . 5 ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴 → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥𝜓} ↔ 𝐴 ∈ {𝑥𝜓}))
217215, 216syl5ibcom 245 . . . 4 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴𝐴 ∈ {𝑥𝜓}))
218217rexlimdva 3134 . . 3 (𝜑 → (∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴𝐴 ∈ {𝑥𝜓}))
21919, 218mpd 15 . 2 (𝜑𝐴 ∈ {𝑥𝜓})
220 mpfind.wg . . . 4 (𝑥 = 𝐴 → (𝜓𝜌))
221220elabg 3643 . . 3 (𝐴𝑄 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
2221, 221syl 17 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
223219, 222mpbid 232 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  wss 3914  {csn 4589  cmpt 5188   × cxp 5636  ccnv 5637  ran crn 5639  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Basecbs 17179  s cress 17200  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223  s cpws 17409   MndHom cmhm 18708   GrpHom cghm 19144  mulGrpcmgp 20049  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378  SubRingcsubrg 20478  AssAlgcasa 21759  algSccascl 21761   mVar cmvr 21814   mPoly cmpl 21815   evalSub ces 21979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-evls 21981
This theorem is referenced by:  pf1ind  22242  mzpmfp  42735
  Copyright terms: Public domain W3C validator