Step | Hyp | Ref
| Expression |
1 | | mpfind.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑄) |
2 | | mpfind.cq |
. . . . 5
⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
3 | 1, 2 | eleqtrdi 2849 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
4 | 2 | mpfrcl 21205 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |
5 | 1, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |
6 | | eqid 2738 |
. . . . . . . 8
⊢ ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅) |
7 | | eqid 2738 |
. . . . . . . 8
⊢ (𝐼 mPoly (𝑆 ↾s 𝑅)) = (𝐼 mPoly (𝑆 ↾s 𝑅)) |
8 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑆 ↾s 𝑅) = (𝑆 ↾s 𝑅) |
9 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑆 ↑s
(𝐵 ↑m 𝐼)) = (𝑆 ↑s (𝐵 ↑m 𝐼)) |
10 | | mpfind.cb |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑆) |
11 | 6, 7, 8, 9, 10 | evlsrhm 21208 |
. . . . . . 7
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
12 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) = (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) |
13 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(𝑆
↑s (𝐵 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐵 ↑m 𝐼))) |
14 | 12, 13 | rhmf 19885 |
. . . . . . 7
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
15 | 5, 11, 14 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
16 | 15 | ffnd 6585 |
. . . . 5
⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
17 | | fvelrnb 6812 |
. . . . 5
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴)) |
18 | 16, 17 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴)) |
19 | 3, 18 | mpbid 231 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴) |
20 | 15 | ffund 6588 |
. . . . . 6
⊢ (𝜑 → Fun ((𝐼 evalSub 𝑆)‘𝑅)) |
21 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(𝑆
↾s 𝑅)) =
(Base‘(𝑆
↾s 𝑅)) |
22 | | eqid 2738 |
. . . . . . 7
⊢ (𝐼 mVar (𝑆 ↾s 𝑅)) = (𝐼 mVar (𝑆 ↾s 𝑅)) |
23 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (+g‘(𝐼 mPoly (𝑆 ↾s 𝑅))) |
24 | | eqid 2738 |
. . . . . . 7
⊢
(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (.r‘(𝐼 mPoly (𝑆 ↾s 𝑅))) |
25 | | eqid 2738 |
. . . . . . 7
⊢
(algSc‘(𝐼
mPoly (𝑆
↾s 𝑅))) =
(algSc‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) |
26 | 5 | simp1d 1140 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈ V) |
27 | 5 | simp2d 1141 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ CRing) |
28 | 5 | simp3d 1142 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
29 | 8 | subrgcrng 19943 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑆 ↾s 𝑅) ∈ CRing) |
30 | 27, 28, 29 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ CRing) |
31 | | crngring 19710 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ↾s 𝑅) ∈ CRing → (𝑆 ↾s 𝑅) ∈ Ring) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ Ring) |
33 | 7 | mplring 21134 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ V ∧ (𝑆 ↾s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
34 | 26, 32, 33 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
35 | 34 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
36 | | simprl 767 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
37 | | elpreima 6917 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}))) |
38 | 16, 37 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}))) |
39 | 38 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}))) |
40 | 36, 39 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓})) |
41 | 40 | simpld 494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
42 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
43 | | elpreima 6917 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) |
44 | 16, 43 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) |
45 | 44 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) |
46 | 42, 45 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})) |
47 | 46 | simpld 494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
48 | 12, 23 | ringacl 19732 |
. . . . . . . . . 10
⊢ (((𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
49 | 35, 41, 47, 48 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
50 | | rhmghm 19884 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) GrpHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
51 | 5, 11, 50 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) GrpHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
52 | 51 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) GrpHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
53 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(+g‘(𝑆 ↑s (𝐵 ↑m 𝐼))) =
(+g‘(𝑆
↑s (𝐵 ↑m 𝐼))) |
54 | 12, 23, 53 | ghmlin 18754 |
. . . . . . . . . . . 12
⊢ ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) GrpHom (𝑆 ↑s (𝐵 ↑m 𝐼))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆 ↑s (𝐵 ↑m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
55 | 52, 41, 47, 54 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆 ↑s (𝐵 ↑m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
56 | 27 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑆 ∈ CRing) |
57 | | ovexd 7290 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝐵 ↑m 𝐼) ∈ V) |
58 | 15 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
59 | 58, 41 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
60 | 58, 47 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
61 | | mpfind.cp |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝑆) |
62 | 9, 13, 56, 57, 59, 60, 61, 53 | pwsplusgval 17118 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆 ↑s (𝐵 ↑m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
63 | 55, 62 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
64 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝜑) |
65 | | fnfvelrn 6940 |
. . . . . . . . . . . . . 14
⊢ ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
66 | 16, 41, 65 | syl2an2r 681 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
67 | 66, 2 | eleqtrrdi 2850 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄) |
68 | | fvimacnvi 6911 |
. . . . . . . . . . . . 13
⊢ ((Fun
((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) |
69 | 20, 36, 68 | syl2an2r 681 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) |
70 | 67, 69 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓})) |
71 | | fnfvelrn 6940 |
. . . . . . . . . . . . . 14
⊢ ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
72 | 16, 47, 71 | syl2an2r 681 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
73 | 72, 2 | eleqtrrdi 2850 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄) |
74 | | fvimacnvi 6911 |
. . . . . . . . . . . . 13
⊢ ((Fun
((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}) |
75 | 20, 42, 74 | syl2an2r 681 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}) |
76 | 73, 75 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})) |
77 | | fvex 6769 |
. . . . . . . . . . . 12
⊢ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ V |
78 | | fvex 6769 |
. . . . . . . . . . . 12
⊢ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ V |
79 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓 ∈ 𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄)) |
80 | | vex 3426 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑓 ∈ V |
81 | | mpfind.wc |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑓 → (𝜓 ↔ 𝜏)) |
82 | 80, 81 | elab 3602 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ {𝑥 ∣ 𝜓} ↔ 𝜏) |
83 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓 ∈ {𝑥 ∣ 𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓})) |
84 | 82, 83 | bitr3id 284 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝜏 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓})) |
85 | 79, 84 | anbi12d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → ((𝑓 ∈ 𝑄 ∧ 𝜏) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}))) |
86 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔 ∈ 𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄)) |
87 | | vex 3426 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑔 ∈ V |
88 | | mpfind.wd |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑔 → (𝜓 ↔ 𝜂)) |
89 | 87, 88 | elab 3602 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ {𝑥 ∣ 𝜓} ↔ 𝜂) |
90 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔 ∈ {𝑥 ∣ 𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})) |
91 | 89, 90 | bitr3id 284 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝜂 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})) |
92 | 86, 91 | anbi12d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → ((𝑔 ∈ 𝑄 ∧ 𝜂) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) |
93 | 85, 92 | bi2anan9 635 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂)) ↔ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})))) |
94 | 93 | anbi2d 628 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) ↔ (𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))))) |
95 | | ovex 7288 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∘f + 𝑔) ∈ V |
96 | | mpfind.we |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑓 ∘f + 𝑔) → (𝜓 ↔ 𝜁)) |
97 | 95, 96 | elab 3602 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∘f + 𝑔) ∈ {𝑥 ∣ 𝜓} ↔ 𝜁) |
98 | | oveq12 7264 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓 ∘f + 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
99 | 98 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓 ∘f + 𝑔) ∈ {𝑥 ∣ 𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓})) |
100 | 97, 99 | bitr3id 284 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜁 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓})) |
101 | 94, 100 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜁) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
102 | | mpfind.ad |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜁) |
103 | 77, 78, 101, 102 | vtocl2 3490 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}) |
104 | 64, 70, 76, 103 | syl12anc 833 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}) |
105 | 63, 104 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}) |
106 | | elpreima 6917 |
. . . . . . . . . . 11
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
107 | 16, 106 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
108 | 107 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
109 | 49, 105, 108 | mpbir2and 709 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
110 | 109 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
111 | 12, 24 | ringcl 19715 |
. . . . . . . . . 10
⊢ (((𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
112 | 35, 41, 47, 111 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
113 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(mulGrp‘(𝐼
mPoly (𝑆
↾s 𝑅))) =
(mulGrp‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) |
114 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(mulGrp‘(𝑆
↑s (𝐵 ↑m 𝐼))) = (mulGrp‘(𝑆 ↑s (𝐵 ↑m 𝐼))) |
115 | 113, 114 | rhmmhm 19881 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅))) MndHom (mulGrp‘(𝑆 ↑s (𝐵 ↑m 𝐼))))) |
116 | 5, 11, 115 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅))) MndHom (mulGrp‘(𝑆 ↑s (𝐵 ↑m 𝐼))))) |
117 | 116 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅))) MndHom (mulGrp‘(𝑆 ↑s (𝐵 ↑m 𝐼))))) |
118 | 113, 12 | mgpbas 19641 |
. . . . . . . . . . . . 13
⊢
(Base‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) =
(Base‘(mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
119 | 113, 24 | mgpplusg 19639 |
. . . . . . . . . . . . 13
⊢
(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅))) =
(+g‘(mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
120 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(.r‘(𝑆 ↑s (𝐵 ↑m 𝐼))) =
(.r‘(𝑆
↑s (𝐵 ↑m 𝐼))) |
121 | 114, 120 | mgpplusg 19639 |
. . . . . . . . . . . . 13
⊢
(.r‘(𝑆 ↑s (𝐵 ↑m 𝐼))) =
(+g‘(mulGrp‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
122 | 118, 119,
121 | mhmlin 18352 |
. . . . . . . . . . . 12
⊢ ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅))) MndHom (mulGrp‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆 ↑s (𝐵 ↑m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
123 | 117, 41, 47, 122 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆 ↑s (𝐵 ↑m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
124 | | mpfind.ct |
. . . . . . . . . . . 12
⊢ · =
(.r‘𝑆) |
125 | 9, 13, 56, 57, 59, 60, 124, 120 | pwsmulrval 17119 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆 ↑s (𝐵 ↑m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
126 | 123, 125 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
127 | | ovex 7288 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∘f · 𝑔) ∈ V |
128 | | mpfind.wf |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑓 ∘f · 𝑔) → (𝜓 ↔ 𝜎)) |
129 | 127, 128 | elab 3602 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∘f · 𝑔) ∈ {𝑥 ∣ 𝜓} ↔ 𝜎) |
130 | | oveq12 7264 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓 ∘f · 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
131 | 130 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓 ∘f · 𝑔) ∈ {𝑥 ∣ 𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓})) |
132 | 129, 131 | bitr3id 284 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜎 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓})) |
133 | 94, 132 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜎) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
134 | | mpfind.mu |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜎) |
135 | 77, 78, 133, 134 | vtocl2 3490 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}) |
136 | 64, 70, 76, 135 | syl12anc 833 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}) |
137 | 126, 136 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}) |
138 | | elpreima 6917 |
. . . . . . . . . . 11
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
139 | 16, 138 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
140 | 139 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
141 | 112, 137,
140 | mpbir2and 709 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
142 | 141 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
143 | 7 | mplassa 21137 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ V ∧ (𝑆 ↾s 𝑅) ∈ CRing) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ AssAlg) |
144 | 26, 30, 143 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ AssAlg) |
145 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Scalar‘(𝐼
mPoly (𝑆
↾s 𝑅))) =
(Scalar‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) |
146 | 25, 145 | asclrhm 21004 |
. . . . . . . . . . . 12
⊢ ((𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ AssAlg → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∈ ((Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))) RingHom (𝐼 mPoly (𝑆 ↾s 𝑅)))) |
147 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
148 | 147, 12 | rhmf 19885 |
. . . . . . . . . . . 12
⊢
((algSc‘(𝐼
mPoly (𝑆
↾s 𝑅)))
∈ ((Scalar‘(𝐼
mPoly (𝑆
↾s 𝑅)))
RingHom (𝐼 mPoly (𝑆 ↾s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
149 | 144, 146,
148 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
150 | 149 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
151 | 7, 26, 30 | mplsca 21127 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆 ↾s 𝑅) = (Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
152 | 151 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Base‘(𝑆 ↾s 𝑅)) =
(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
153 | 152 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑖 ∈ (Base‘(𝑆 ↾s 𝑅)) ↔ 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))))) |
154 | 153 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
155 | 150, 154 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
156 | 26 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝐼 ∈ V) |
157 | 27 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝑆 ∈ CRing) |
158 | 28 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝑅 ∈ (SubRing‘𝑆)) |
159 | 10 | subrgss 19940 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
160 | 8, 10 | ressbas2 16875 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ⊆ 𝐵 → 𝑅 = (Base‘(𝑆 ↾s 𝑅))) |
161 | 28, 159, 160 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 = (Base‘(𝑆 ↾s 𝑅))) |
162 | 161 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑖 ∈ 𝑅 ↔ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅)))) |
163 | 162 | biimpar 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝑖 ∈ 𝑅) |
164 | 6, 7, 8, 10, 25, 156, 157, 158, 163 | evlssca 21209 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) = ((𝐵 ↑m 𝐼) × {𝑖})) |
165 | | mpfind.co |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑅) → 𝜒) |
166 | 165 | ralrimiva 3107 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑓 ∈ 𝑅 𝜒) |
167 | | ovex 7288 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ↑m 𝐼) ∈ V |
168 | | snex 5349 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑓} ∈ V |
169 | 167, 168 | xpex 7581 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ↑m 𝐼) × {𝑓}) ∈ V |
170 | | mpfind.wa |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = ((𝐵 ↑m 𝐼) × {𝑓}) → (𝜓 ↔ 𝜒)) |
171 | 169, 170 | elab 3602 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵 ↑m 𝐼) × {𝑓}) ∈ {𝑥 ∣ 𝜓} ↔ 𝜒) |
172 | | sneq 4568 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑖 → {𝑓} = {𝑖}) |
173 | 172 | xpeq2d 5610 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑖 → ((𝐵 ↑m 𝐼) × {𝑓}) = ((𝐵 ↑m 𝐼) × {𝑖})) |
174 | 173 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑖 → (((𝐵 ↑m 𝐼) × {𝑓}) ∈ {𝑥 ∣ 𝜓} ↔ ((𝐵 ↑m 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓})) |
175 | 171, 174 | bitr3id 284 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑖 → (𝜒 ↔ ((𝐵 ↑m 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓})) |
176 | 175 | cbvralvw 3372 |
. . . . . . . . . . . . 13
⊢
(∀𝑓 ∈
𝑅 𝜒 ↔ ∀𝑖 ∈ 𝑅 ((𝐵 ↑m 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓}) |
177 | 166, 176 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑖 ∈ 𝑅 ((𝐵 ↑m 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓}) |
178 | 177 | r19.21bi 3132 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑅) → ((𝐵 ↑m 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓}) |
179 | 163, 178 | syldan 590 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → ((𝐵 ↑m 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓}) |
180 | 164, 179 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
181 | | elpreima 6917 |
. . . . . . . . . . 11
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
182 | 16, 181 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
183 | 182 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
184 | 155, 180,
183 | mpbir2and 709 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
185 | 184 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
186 | 26 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ V) |
187 | 32 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 ↾s 𝑅) ∈ Ring) |
188 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
189 | 7, 22, 12, 186, 187, 188 | mvrcl 21131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
190 | 27 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑆 ∈ CRing) |
191 | 28 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑅 ∈ (SubRing‘𝑆)) |
192 | 6, 22, 8, 10, 186, 190, 191, 188 | evlsvar 21210 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑖))) |
193 | | mpfind.pr |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐼) → 𝜃) |
194 | 167 | mptex 7081 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) ∈ V |
195 | | mpfind.wb |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) → (𝜓 ↔ 𝜃)) |
196 | 194, 195 | elab 3602 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓} ↔ 𝜃) |
197 | 193, 196 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐼) → (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓}) |
198 | 197 | ralrimiva 3107 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑓 ∈ 𝐼 (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓}) |
199 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑖 → (𝑔‘𝑓) = (𝑔‘𝑖)) |
200 | 199 | mpteq2dv 5172 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑖 → (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑖))) |
201 | 200 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑖 → ((𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓} ↔ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑖)) ∈ {𝑥 ∣ 𝜓})) |
202 | 201 | cbvralvw 3372 |
. . . . . . . . . . . 12
⊢
(∀𝑓 ∈
𝐼 (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓} ↔ ∀𝑖 ∈ 𝐼 (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
203 | 198, 202 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑖 ∈ 𝐼 (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
204 | 203 | r19.21bi 3132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
205 | 192, 204 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
206 | | elpreima 6917 |
. . . . . . . . . . 11
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
207 | 16, 206 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
208 | 207 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
209 | 189, 205,
208 | mpbir2and 709 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
210 | 209 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∧ 𝑖 ∈ 𝐼) → ((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
211 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
212 | 26 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → 𝐼 ∈ V) |
213 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (𝑆 ↾s 𝑅) ∈ CRing) |
214 | 21, 22, 7, 23, 24, 25, 12, 110, 142, 185, 210, 211, 212, 213 | mplind 21188 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → 𝑦 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
215 | | fvimacnvi 6911 |
. . . . . 6
⊢ ((Fun
((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑦 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥 ∣ 𝜓}) |
216 | 20, 214, 215 | syl2an2r 681 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥 ∣ 𝜓}) |
217 | | eleq1 2826 |
. . . . 5
⊢ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴 → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥 ∣ 𝜓} ↔ 𝐴 ∈ {𝑥 ∣ 𝜓})) |
218 | 216, 217 | syl5ibcom 244 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴 → 𝐴 ∈ {𝑥 ∣ 𝜓})) |
219 | 218 | rexlimdva 3212 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴 → 𝐴 ∈ {𝑥 ∣ 𝜓})) |
220 | 19, 219 | mpd 15 |
. 2
⊢ (𝜑 → 𝐴 ∈ {𝑥 ∣ 𝜓}) |
221 | | mpfind.wg |
. . . 4
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜌)) |
222 | 221 | elabg 3600 |
. . 3
⊢ (𝐴 ∈ 𝑄 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜌)) |
223 | 1, 222 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜌)) |
224 | 220, 223 | mpbid 231 |
1
⊢ (𝜑 → 𝜌) |