MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfind Structured version   Visualization version   GIF version

Theorem mpfind 22154
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
mpfind.cb 𝐵 = (Base‘𝑆)
mpfind.cp + = (+g𝑆)
mpfind.ct · = (.r𝑆)
mpfind.cq 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
mpfind.ad ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
mpfind.mu ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
mpfind.wa (𝑥 = ((𝐵m 𝐼) × {𝑓}) → (𝜓𝜒))
mpfind.wb (𝑥 = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) → (𝜓𝜃))
mpfind.wc (𝑥 = 𝑓 → (𝜓𝜏))
mpfind.wd (𝑥 = 𝑔 → (𝜓𝜂))
mpfind.we (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
mpfind.wf (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
mpfind.wg (𝑥 = 𝐴 → (𝜓𝜌))
mpfind.co ((𝜑𝑓𝑅) → 𝜒)
mpfind.pr ((𝜑𝑓𝐼) → 𝜃)
mpfind.a (𝜑𝐴𝑄)
Assertion
Ref Expression
mpfind (𝜑𝜌)
Distinct variable groups:   𝜒,𝑥   𝜂,𝑥   𝜑,𝑓,𝑔   𝜓,𝑓,𝑔   𝜌,𝑥   𝜎,𝑥   𝜏,𝑥   𝜃,𝑥   𝜁,𝑥   𝑥,𝐴   𝐵,𝑓,𝑔,𝑥   𝑓,𝐼,𝑔,𝑥   + ,𝑓,𝑔,𝑥   𝑄,𝑓,𝑔   𝑅,𝑓,𝑔   𝑆,𝑓,𝑔   · ,𝑓,𝑔,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑓,𝑔)   𝜃(𝑓,𝑔)   𝜏(𝑓,𝑔)   𝜂(𝑓,𝑔)   𝜁(𝑓,𝑔)   𝜎(𝑓,𝑔)   𝜌(𝑓,𝑔)   𝐴(𝑓,𝑔)   𝑄(𝑥)   𝑅(𝑥)   𝑆(𝑥)

Proof of Theorem mpfind
Dummy variables 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpfind.a . . . . 5 (𝜑𝐴𝑄)
2 mpfind.cq . . . . 5 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
31, 2eleqtrdi 2854 . . . 4 (𝜑𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
42mpfrcl 22132 . . . . . . . 8 (𝐴𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))
51, 4syl 17 . . . . . . 7 (𝜑 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))
6 eqid 2740 . . . . . . . 8 ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅)
7 eqid 2740 . . . . . . . 8 (𝐼 mPoly (𝑆s 𝑅)) = (𝐼 mPoly (𝑆s 𝑅))
8 eqid 2740 . . . . . . . 8 (𝑆s 𝑅) = (𝑆s 𝑅)
9 eqid 2740 . . . . . . . 8 (𝑆s (𝐵m 𝐼)) = (𝑆s (𝐵m 𝐼))
10 mpfind.cb . . . . . . . 8 𝐵 = (Base‘𝑆)
116, 7, 8, 9, 10evlsrhm 22135 . . . . . . 7 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))))
12 eqid 2740 . . . . . . . 8 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(𝐼 mPoly (𝑆s 𝑅)))
13 eqid 2740 . . . . . . . 8 (Base‘(𝑆s (𝐵m 𝐼))) = (Base‘(𝑆s (𝐵m 𝐼)))
1412, 13rhmf 20511 . . . . . . 7 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
155, 11, 143syl 18 . . . . . 6 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
1615ffnd 6748 . . . . 5 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
17 fvelrnb 6982 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴))
1816, 17syl 17 . . . 4 (𝜑 → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴))
193, 18mpbid 232 . . 3 (𝜑 → ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴)
2015ffund 6751 . . . . . 6 (𝜑 → Fun ((𝐼 evalSub 𝑆)‘𝑅))
21 eqid 2740 . . . . . . 7 (Base‘(𝑆s 𝑅)) = (Base‘(𝑆s 𝑅))
22 eqid 2740 . . . . . . 7 (𝐼 mVar (𝑆s 𝑅)) = (𝐼 mVar (𝑆s 𝑅))
23 eqid 2740 . . . . . . 7 (+g‘(𝐼 mPoly (𝑆s 𝑅))) = (+g‘(𝐼 mPoly (𝑆s 𝑅)))
24 eqid 2740 . . . . . . 7 (.r‘(𝐼 mPoly (𝑆s 𝑅))) = (.r‘(𝐼 mPoly (𝑆s 𝑅)))
25 eqid 2740 . . . . . . 7 (algSc‘(𝐼 mPoly (𝑆s 𝑅))) = (algSc‘(𝐼 mPoly (𝑆s 𝑅)))
265simp1d 1142 . . . . . . . . . . . 12 (𝜑𝐼 ∈ V)
275simp2d 1143 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ CRing)
285simp3d 1144 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ (SubRing‘𝑆))
298subrgcrng 20603 . . . . . . . . . . . . . 14 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑆s 𝑅) ∈ CRing)
3027, 28, 29syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (𝑆s 𝑅) ∈ CRing)
31 crngring 20272 . . . . . . . . . . . . 13 ((𝑆s 𝑅) ∈ CRing → (𝑆s 𝑅) ∈ Ring)
3230, 31syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑆s 𝑅) ∈ Ring)
337, 26, 32mplringd 22066 . . . . . . . . . . 11 (𝜑 → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
3433adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
35 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
36 elpreima 7091 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
3716, 36syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
3837adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
3935, 38mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
4039simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
41 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
42 elpreima 7091 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
4316, 42syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
4443adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
4541, 44mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
4645simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
4712, 23ringacl 20301 . . . . . . . . . 10 (((𝐼 mPoly (𝑆s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
4834, 40, 46, 47syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
49 rhmghm 20510 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))))
505, 11, 493syl 18 . . . . . . . . . . . . 13 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))))
5150adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))))
52 eqid 2740 . . . . . . . . . . . . 13 (+g‘(𝑆s (𝐵m 𝐼))) = (+g‘(𝑆s (𝐵m 𝐼)))
5312, 23, 52ghmlin 19261 . . . . . . . . . . . 12 ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
5451, 40, 46, 53syl3anc 1371 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
5527adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑆 ∈ CRing)
56 ovexd 7483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝐵m 𝐼) ∈ V)
5715adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
5857, 40ffvelcdmd 7119 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ (Base‘(𝑆s (𝐵m 𝐼))))
5957, 46ffvelcdmd 7119 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ (Base‘(𝑆s (𝐵m 𝐼))))
60 mpfind.cp . . . . . . . . . . . 12 + = (+g𝑆)
619, 13, 55, 56, 58, 59, 60, 52pwsplusgval 17550 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
6254, 61eqtrd 2780 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
63 simpl 482 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝜑)
64 fnfvelrn 7114 . . . . . . . . . . . . . 14 ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
6516, 40, 64syl2an2r 684 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
6665, 2eleqtrrdi 2855 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄)
67 fvimacnvi 7085 . . . . . . . . . . . . 13 ((Fun ((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})
6820, 35, 67syl2an2r 684 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})
6966, 68jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
70 fnfvelrn 7114 . . . . . . . . . . . . . 14 ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
7116, 46, 70syl2an2r 684 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
7271, 2eleqtrrdi 2855 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄)
73 fvimacnvi 7085 . . . . . . . . . . . . 13 ((Fun ((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})
7420, 41, 73syl2an2r 684 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})
7572, 74jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
76 fvex 6933 . . . . . . . . . . . 12 (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ V
77 fvex 6933 . . . . . . . . . . . 12 (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ V
78 eleq1 2832 . . . . . . . . . . . . . . . 16 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄))
79 vex 3492 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
80 mpfind.wc . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑓 → (𝜓𝜏))
8179, 80elab 3694 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ {𝑥𝜓} ↔ 𝜏)
82 eleq1 2832 . . . . . . . . . . . . . . . . 17 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓 ∈ {𝑥𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
8381, 82bitr3id 285 . . . . . . . . . . . . . . . 16 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝜏 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
8478, 83anbi12d 631 . . . . . . . . . . . . . . 15 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → ((𝑓𝑄𝜏) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
85 eleq1 2832 . . . . . . . . . . . . . . . 16 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄))
86 vex 3492 . . . . . . . . . . . . . . . . . 18 𝑔 ∈ V
87 mpfind.wd . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑔 → (𝜓𝜂))
8886, 87elab 3694 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ {𝑥𝜓} ↔ 𝜂)
89 eleq1 2832 . . . . . . . . . . . . . . . . 17 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔 ∈ {𝑥𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
9088, 89bitr3id 285 . . . . . . . . . . . . . . . 16 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝜂 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
9185, 90anbi12d 631 . . . . . . . . . . . . . . 15 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → ((𝑔𝑄𝜂) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
9284, 91bi2anan9 637 . . . . . . . . . . . . . 14 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) ↔ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))))
9392anbi2d 629 . . . . . . . . . . . . 13 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) ↔ (𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))))
94 ovex 7481 . . . . . . . . . . . . . . 15 (𝑓f + 𝑔) ∈ V
95 mpfind.we . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
9694, 95elab 3694 . . . . . . . . . . . . . 14 ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ 𝜁)
97 oveq12 7457 . . . . . . . . . . . . . . 15 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓f + 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
9897eleq1d 2829 . . . . . . . . . . . . . 14 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
9996, 98bitr3id 285 . . . . . . . . . . . . 13 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜁 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
10093, 99imbi12d 344 . . . . . . . . . . . 12 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})))
101 mpfind.ad . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
10276, 77, 100, 101vtocl2 3578 . . . . . . . . . . 11 ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
10363, 69, 75, 102syl12anc 836 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
10462, 103eqeltrd 2844 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})
105 elpreima 7091 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
10616, 105syl 17 . . . . . . . . . 10 (𝜑 → ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
107106adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
10848, 104, 107mpbir2and 712 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
109108adantlr 714 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
11012, 24ringcl 20277 . . . . . . . . . 10 (((𝐼 mPoly (𝑆s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
11134, 40, 46, 110syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
112 eqid 2740 . . . . . . . . . . . . . . 15 (mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) = (mulGrp‘(𝐼 mPoly (𝑆s 𝑅)))
113 eqid 2740 . . . . . . . . . . . . . . 15 (mulGrp‘(𝑆s (𝐵m 𝐼))) = (mulGrp‘(𝑆s (𝐵m 𝐼)))
114112, 113rhmmhm 20505 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))))
1155, 11, 1143syl 18 . . . . . . . . . . . . 13 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))))
116115adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))))
117112, 12mgpbas 20167 . . . . . . . . . . . . 13 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(mulGrp‘(𝐼 mPoly (𝑆s 𝑅))))
118112, 24mgpplusg 20165 . . . . . . . . . . . . 13 (.r‘(𝐼 mPoly (𝑆s 𝑅))) = (+g‘(mulGrp‘(𝐼 mPoly (𝑆s 𝑅))))
119 eqid 2740 . . . . . . . . . . . . . 14 (.r‘(𝑆s (𝐵m 𝐼))) = (.r‘(𝑆s (𝐵m 𝐼)))
120113, 119mgpplusg 20165 . . . . . . . . . . . . 13 (.r‘(𝑆s (𝐵m 𝐼))) = (+g‘(mulGrp‘(𝑆s (𝐵m 𝐼))))
121117, 118, 120mhmlin 18828 . . . . . . . . . . . 12 ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
122116, 40, 46, 121syl3anc 1371 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
123 mpfind.ct . . . . . . . . . . . 12 · = (.r𝑆)
1249, 13, 55, 56, 58, 59, 123, 119pwsmulrval 17551 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
125122, 124eqtrd 2780 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
126 ovex 7481 . . . . . . . . . . . . . . 15 (𝑓f · 𝑔) ∈ V
127 mpfind.wf . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
128126, 127elab 3694 . . . . . . . . . . . . . 14 ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ 𝜎)
129 oveq12 7457 . . . . . . . . . . . . . . 15 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓f · 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
130129eleq1d 2829 . . . . . . . . . . . . . 14 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
131128, 130bitr3id 285 . . . . . . . . . . . . 13 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜎 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
13293, 131imbi12d 344 . . . . . . . . . . . 12 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})))
133 mpfind.mu . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
13476, 77, 132, 133vtocl2 3578 . . . . . . . . . . 11 ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
13563, 69, 75, 134syl12anc 836 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
136125, 135eqeltrd 2844 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})
137 elpreima 7091 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
13816, 137syl 17 . . . . . . . . . 10 (𝜑 → ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
139138adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
140111, 136, 139mpbir2and 712 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
141140adantlr 714 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
1427mplassa 22065 . . . . . . . . . . . . 13 ((𝐼 ∈ V ∧ (𝑆s 𝑅) ∈ CRing) → (𝐼 mPoly (𝑆s 𝑅)) ∈ AssAlg)
14326, 30, 142syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (𝐼 mPoly (𝑆s 𝑅)) ∈ AssAlg)
144 eqid 2740 . . . . . . . . . . . . 13 (Scalar‘(𝐼 mPoly (𝑆s 𝑅))) = (Scalar‘(𝐼 mPoly (𝑆s 𝑅)))
14525, 144asclrhm 21933 . . . . . . . . . . . 12 ((𝐼 mPoly (𝑆s 𝑅)) ∈ AssAlg → (algSc‘(𝐼 mPoly (𝑆s 𝑅))) ∈ ((Scalar‘(𝐼 mPoly (𝑆s 𝑅))) RingHom (𝐼 mPoly (𝑆s 𝑅))))
146 eqid 2740 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))) = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))
147146, 12rhmf 20511 . . . . . . . . . . . 12 ((algSc‘(𝐼 mPoly (𝑆s 𝑅))) ∈ ((Scalar‘(𝐼 mPoly (𝑆s 𝑅))) RingHom (𝐼 mPoly (𝑆s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
148143, 145, 1473syl 18 . . . . . . . . . . 11 (𝜑 → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
149148adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
1507, 26, 30mplsca 22056 . . . . . . . . . . . . 13 (𝜑 → (𝑆s 𝑅) = (Scalar‘(𝐼 mPoly (𝑆s 𝑅))))
151150fveq2d 6924 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑆s 𝑅)) = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
152151eleq2d 2830 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (Base‘(𝑆s 𝑅)) ↔ 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))))
153152biimpa 476 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
154149, 153ffvelcdmd 7119 . . . . . . . . 9 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
15526adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝐼 ∈ V)
15627adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑆 ∈ CRing)
15728adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑅 ∈ (SubRing‘𝑆))
15810subrgss 20600 . . . . . . . . . . . . . 14 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
1598, 10ressbas2 17296 . . . . . . . . . . . . . 14 (𝑅𝐵𝑅 = (Base‘(𝑆s 𝑅)))
16028, 158, 1593syl 18 . . . . . . . . . . . . 13 (𝜑𝑅 = (Base‘(𝑆s 𝑅)))
161160eleq2d 2830 . . . . . . . . . . . 12 (𝜑 → (𝑖𝑅𝑖 ∈ (Base‘(𝑆s 𝑅))))
162161biimpar 477 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑖𝑅)
1636, 7, 8, 10, 25, 155, 156, 157, 162evlssca 22136 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) = ((𝐵m 𝐼) × {𝑖}))
164 mpfind.co . . . . . . . . . . . . . 14 ((𝜑𝑓𝑅) → 𝜒)
165164ralrimiva 3152 . . . . . . . . . . . . 13 (𝜑 → ∀𝑓𝑅 𝜒)
166 ovex 7481 . . . . . . . . . . . . . . . . 17 (𝐵m 𝐼) ∈ V
167 vsnex 5449 . . . . . . . . . . . . . . . . 17 {𝑓} ∈ V
168166, 167xpex 7788 . . . . . . . . . . . . . . . 16 ((𝐵m 𝐼) × {𝑓}) ∈ V
169 mpfind.wa . . . . . . . . . . . . . . . 16 (𝑥 = ((𝐵m 𝐼) × {𝑓}) → (𝜓𝜒))
170168, 169elab 3694 . . . . . . . . . . . . . . 15 (((𝐵m 𝐼) × {𝑓}) ∈ {𝑥𝜓} ↔ 𝜒)
171 sneq 4658 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑖 → {𝑓} = {𝑖})
172171xpeq2d 5730 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑖 → ((𝐵m 𝐼) × {𝑓}) = ((𝐵m 𝐼) × {𝑖}))
173172eleq1d 2829 . . . . . . . . . . . . . . 15 (𝑓 = 𝑖 → (((𝐵m 𝐼) × {𝑓}) ∈ {𝑥𝜓} ↔ ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓}))
174170, 173bitr3id 285 . . . . . . . . . . . . . 14 (𝑓 = 𝑖 → (𝜒 ↔ ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓}))
175174cbvralvw 3243 . . . . . . . . . . . . 13 (∀𝑓𝑅 𝜒 ↔ ∀𝑖𝑅 ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
176165, 175sylib 218 . . . . . . . . . . . 12 (𝜑 → ∀𝑖𝑅 ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
177176r19.21bi 3257 . . . . . . . . . . 11 ((𝜑𝑖𝑅) → ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
178162, 177syldan 590 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
179163, 178eqeltrd 2844 . . . . . . . . 9 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})
180 elpreima 7091 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})))
18116, 180syl 17 . . . . . . . . . 10 (𝜑 → (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})))
182181adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})))
183154, 179, 182mpbir2and 712 . . . . . . . 8 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
184183adantlr 714 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ 𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
18526adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝐼) → 𝐼 ∈ V)
18632adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝐼) → (𝑆s 𝑅) ∈ Ring)
187 simpr 484 . . . . . . . . . 10 ((𝜑𝑖𝐼) → 𝑖𝐼)
1887, 22, 12, 185, 186, 187mvrcl 22035 . . . . . . . . 9 ((𝜑𝑖𝐼) → ((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
18927adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝐼) → 𝑆 ∈ CRing)
19028adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝐼) → 𝑅 ∈ (SubRing‘𝑆))
1916, 22, 8, 10, 185, 189, 190, 187evlsvar 22137 . . . . . . . . . 10 ((𝜑𝑖𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)))
192 mpfind.pr . . . . . . . . . . . . . 14 ((𝜑𝑓𝐼) → 𝜃)
193166mptex 7260 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ V
194 mpfind.wb . . . . . . . . . . . . . . 15 (𝑥 = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) → (𝜓𝜃))
195193, 194elab 3694 . . . . . . . . . . . . . 14 ((𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓} ↔ 𝜃)
196192, 195sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑓𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓})
197196ralrimiva 3152 . . . . . . . . . . . 12 (𝜑 → ∀𝑓𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓})
198 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑓 = 𝑖 → (𝑔𝑓) = (𝑔𝑖))
199198mpteq2dv 5268 . . . . . . . . . . . . . 14 (𝑓 = 𝑖 → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)))
200199eleq1d 2829 . . . . . . . . . . . . 13 (𝑓 = 𝑖 → ((𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓} ↔ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓}))
201200cbvralvw 3243 . . . . . . . . . . . 12 (∀𝑓𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓} ↔ ∀𝑖𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓})
202197, 201sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑖𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓})
203202r19.21bi 3257 . . . . . . . . . 10 ((𝜑𝑖𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓})
204191, 203eqeltrd 2844 . . . . . . . . 9 ((𝜑𝑖𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})
205 elpreima 7091 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})))
20616, 205syl 17 . . . . . . . . . 10 (𝜑 → (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})))
207206adantr 480 . . . . . . . . 9 ((𝜑𝑖𝐼) → (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})))
208188, 204, 207mpbir2and 712 . . . . . . . 8 ((𝜑𝑖𝐼) → ((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
209208adantlr 714 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ 𝑖𝐼) → ((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
210 simpr 484 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
21126adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → 𝐼 ∈ V)
21230adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (𝑆s 𝑅) ∈ CRing)
21321, 22, 7, 23, 24, 25, 12, 109, 141, 184, 209, 210, 211, 212mplind 22117 . . . . . 6 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → 𝑦 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
214 fvimacnvi 7085 . . . . . 6 ((Fun ((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑦 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥𝜓})
21520, 213, 214syl2an2r 684 . . . . 5 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥𝜓})
216 eleq1 2832 . . . . 5 ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴 → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥𝜓} ↔ 𝐴 ∈ {𝑥𝜓}))
217215, 216syl5ibcom 245 . . . 4 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴𝐴 ∈ {𝑥𝜓}))
218217rexlimdva 3161 . . 3 (𝜑 → (∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴𝐴 ∈ {𝑥𝜓}))
21919, 218mpd 15 . 2 (𝜑𝐴 ∈ {𝑥𝜓})
220 mpfind.wg . . . 4 (𝑥 = 𝐴 → (𝜓𝜌))
221220elabg 3690 . . 3 (𝐴𝑄 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
2221, 221syl 17 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
223219, 222mpbid 232 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  wss 3976  {csn 4648  cmpt 5249   × cxp 5698  ccnv 5699  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  Basecbs 17258  s cress 17287  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314  s cpws 17506   MndHom cmhm 18816   GrpHom cghm 19252  mulGrpcmgp 20161  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  SubRingcsubrg 20595  AssAlgcasa 21893  algSccascl 21895   mVar cmvr 21948   mPoly cmpl 21949   evalSub ces 22119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-evls 22121
This theorem is referenced by:  pf1ind  22380  mzpmfp  42703
  Copyright terms: Public domain W3C validator