MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfind Structured version   Visualization version   GIF version

Theorem mpfind 22047
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
mpfind.cb 𝐵 = (Base‘𝑆)
mpfind.cp + = (+g𝑆)
mpfind.ct · = (.r𝑆)
mpfind.cq 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
mpfind.ad ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
mpfind.mu ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
mpfind.wa (𝑥 = ((𝐵m 𝐼) × {𝑓}) → (𝜓𝜒))
mpfind.wb (𝑥 = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) → (𝜓𝜃))
mpfind.wc (𝑥 = 𝑓 → (𝜓𝜏))
mpfind.wd (𝑥 = 𝑔 → (𝜓𝜂))
mpfind.we (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
mpfind.wf (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
mpfind.wg (𝑥 = 𝐴 → (𝜓𝜌))
mpfind.co ((𝜑𝑓𝑅) → 𝜒)
mpfind.pr ((𝜑𝑓𝐼) → 𝜃)
mpfind.a (𝜑𝐴𝑄)
Assertion
Ref Expression
mpfind (𝜑𝜌)
Distinct variable groups:   𝜒,𝑥   𝜂,𝑥   𝜑,𝑓,𝑔   𝜓,𝑓,𝑔   𝜌,𝑥   𝜎,𝑥   𝜏,𝑥   𝜃,𝑥   𝜁,𝑥   𝑥,𝐴   𝐵,𝑓,𝑔,𝑥   𝑓,𝐼,𝑔,𝑥   + ,𝑓,𝑔,𝑥   𝑄,𝑓,𝑔   𝑅,𝑓,𝑔   𝑆,𝑓,𝑔   · ,𝑓,𝑔,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑓,𝑔)   𝜃(𝑓,𝑔)   𝜏(𝑓,𝑔)   𝜂(𝑓,𝑔)   𝜁(𝑓,𝑔)   𝜎(𝑓,𝑔)   𝜌(𝑓,𝑔)   𝐴(𝑓,𝑔)   𝑄(𝑥)   𝑅(𝑥)   𝑆(𝑥)

Proof of Theorem mpfind
Dummy variables 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpfind.a . . . . 5 (𝜑𝐴𝑄)
2 mpfind.cq . . . . 5 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
31, 2eleqtrdi 2838 . . . 4 (𝜑𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
42mpfrcl 22025 . . . . . . . 8 (𝐴𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))
51, 4syl 17 . . . . . . 7 (𝜑 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))
6 eqid 2729 . . . . . . . 8 ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅)
7 eqid 2729 . . . . . . . 8 (𝐼 mPoly (𝑆s 𝑅)) = (𝐼 mPoly (𝑆s 𝑅))
8 eqid 2729 . . . . . . . 8 (𝑆s 𝑅) = (𝑆s 𝑅)
9 eqid 2729 . . . . . . . 8 (𝑆s (𝐵m 𝐼)) = (𝑆s (𝐵m 𝐼))
10 mpfind.cb . . . . . . . 8 𝐵 = (Base‘𝑆)
116, 7, 8, 9, 10evlsrhm 22028 . . . . . . 7 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))))
12 eqid 2729 . . . . . . . 8 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(𝐼 mPoly (𝑆s 𝑅)))
13 eqid 2729 . . . . . . . 8 (Base‘(𝑆s (𝐵m 𝐼))) = (Base‘(𝑆s (𝐵m 𝐼)))
1412, 13rhmf 20405 . . . . . . 7 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
155, 11, 143syl 18 . . . . . 6 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
1615ffnd 6671 . . . . 5 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
17 fvelrnb 6903 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴))
1816, 17syl 17 . . . 4 (𝜑 → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴))
193, 18mpbid 232 . . 3 (𝜑 → ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴)
2015ffund 6674 . . . . . 6 (𝜑 → Fun ((𝐼 evalSub 𝑆)‘𝑅))
21 eqid 2729 . . . . . . 7 (Base‘(𝑆s 𝑅)) = (Base‘(𝑆s 𝑅))
22 eqid 2729 . . . . . . 7 (𝐼 mVar (𝑆s 𝑅)) = (𝐼 mVar (𝑆s 𝑅))
23 eqid 2729 . . . . . . 7 (+g‘(𝐼 mPoly (𝑆s 𝑅))) = (+g‘(𝐼 mPoly (𝑆s 𝑅)))
24 eqid 2729 . . . . . . 7 (.r‘(𝐼 mPoly (𝑆s 𝑅))) = (.r‘(𝐼 mPoly (𝑆s 𝑅)))
25 eqid 2729 . . . . . . 7 (algSc‘(𝐼 mPoly (𝑆s 𝑅))) = (algSc‘(𝐼 mPoly (𝑆s 𝑅)))
265simp1d 1142 . . . . . . . . . . . 12 (𝜑𝐼 ∈ V)
275simp2d 1143 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ CRing)
285simp3d 1144 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ (SubRing‘𝑆))
298subrgcrng 20495 . . . . . . . . . . . . . 14 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑆s 𝑅) ∈ CRing)
3027, 28, 29syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑆s 𝑅) ∈ CRing)
31 crngring 20165 . . . . . . . . . . . . 13 ((𝑆s 𝑅) ∈ CRing → (𝑆s 𝑅) ∈ Ring)
3230, 31syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑆s 𝑅) ∈ Ring)
337, 26, 32mplringd 21965 . . . . . . . . . . 11 (𝜑 → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
3433adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
35 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
36 elpreima 7012 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
3716, 36syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
3837adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
3935, 38mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
4039simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
41 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
42 elpreima 7012 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
4316, 42syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
4443adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
4541, 44mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
4645simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
4712, 23ringacl 20198 . . . . . . . . . 10 (((𝐼 mPoly (𝑆s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
4834, 40, 46, 47syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
49 rhmghm 20404 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))))
505, 11, 493syl 18 . . . . . . . . . . . . 13 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))))
5150adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))))
52 eqid 2729 . . . . . . . . . . . . 13 (+g‘(𝑆s (𝐵m 𝐼))) = (+g‘(𝑆s (𝐵m 𝐼)))
5312, 23, 52ghmlin 19135 . . . . . . . . . . . 12 ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
5451, 40, 46, 53syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
5527adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑆 ∈ CRing)
56 ovexd 7404 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝐵m 𝐼) ∈ V)
5715adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
5857, 40ffvelcdmd 7039 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ (Base‘(𝑆s (𝐵m 𝐼))))
5957, 46ffvelcdmd 7039 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ (Base‘(𝑆s (𝐵m 𝐼))))
60 mpfind.cp . . . . . . . . . . . 12 + = (+g𝑆)
619, 13, 55, 56, 58, 59, 60, 52pwsplusgval 17429 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
6254, 61eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
63 simpl 482 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝜑)
64 fnfvelrn 7034 . . . . . . . . . . . . . 14 ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
6516, 40, 64syl2an2r 685 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
6665, 2eleqtrrdi 2839 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄)
67 fvimacnvi 7006 . . . . . . . . . . . . 13 ((Fun ((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})
6820, 35, 67syl2an2r 685 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})
6966, 68jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
70 fnfvelrn 7034 . . . . . . . . . . . . . 14 ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
7116, 46, 70syl2an2r 685 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
7271, 2eleqtrrdi 2839 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄)
73 fvimacnvi 7006 . . . . . . . . . . . . 13 ((Fun ((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})
7420, 41, 73syl2an2r 685 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})
7572, 74jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
76 fvex 6853 . . . . . . . . . . . 12 (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ V
77 fvex 6853 . . . . . . . . . . . 12 (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ V
78 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄))
79 vex 3448 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
80 mpfind.wc . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑓 → (𝜓𝜏))
8179, 80elab 3643 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ {𝑥𝜓} ↔ 𝜏)
82 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓 ∈ {𝑥𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
8381, 82bitr3id 285 . . . . . . . . . . . . . . . 16 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝜏 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
8478, 83anbi12d 632 . . . . . . . . . . . . . . 15 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → ((𝑓𝑄𝜏) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
85 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄))
86 vex 3448 . . . . . . . . . . . . . . . . . 18 𝑔 ∈ V
87 mpfind.wd . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑔 → (𝜓𝜂))
8886, 87elab 3643 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ {𝑥𝜓} ↔ 𝜂)
89 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔 ∈ {𝑥𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
9088, 89bitr3id 285 . . . . . . . . . . . . . . . 16 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝜂 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
9185, 90anbi12d 632 . . . . . . . . . . . . . . 15 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → ((𝑔𝑄𝜂) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
9284, 91bi2anan9 638 . . . . . . . . . . . . . 14 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) ↔ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))))
9392anbi2d 630 . . . . . . . . . . . . 13 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) ↔ (𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))))
94 ovex 7402 . . . . . . . . . . . . . . 15 (𝑓f + 𝑔) ∈ V
95 mpfind.we . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
9694, 95elab 3643 . . . . . . . . . . . . . 14 ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ 𝜁)
97 oveq12 7378 . . . . . . . . . . . . . . 15 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓f + 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
9897eleq1d 2813 . . . . . . . . . . . . . 14 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
9996, 98bitr3id 285 . . . . . . . . . . . . 13 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜁 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
10093, 99imbi12d 344 . . . . . . . . . . . 12 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})))
101 mpfind.ad . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
10276, 77, 100, 101vtocl2 3529 . . . . . . . . . . 11 ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
10363, 69, 75, 102syl12anc 836 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
10462, 103eqeltrd 2828 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})
105 elpreima 7012 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
10616, 105syl 17 . . . . . . . . . 10 (𝜑 → ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
107106adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
10848, 104, 107mpbir2and 713 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
109108adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
11012, 24ringcl 20170 . . . . . . . . . 10 (((𝐼 mPoly (𝑆s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
11134, 40, 46, 110syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
112 eqid 2729 . . . . . . . . . . . . . . 15 (mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) = (mulGrp‘(𝐼 mPoly (𝑆s 𝑅)))
113 eqid 2729 . . . . . . . . . . . . . . 15 (mulGrp‘(𝑆s (𝐵m 𝐼))) = (mulGrp‘(𝑆s (𝐵m 𝐼)))
114112, 113rhmmhm 20399 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))))
1155, 11, 1143syl 18 . . . . . . . . . . . . 13 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))))
116115adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))))
117112, 12mgpbas 20065 . . . . . . . . . . . . 13 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(mulGrp‘(𝐼 mPoly (𝑆s 𝑅))))
118112, 24mgpplusg 20064 . . . . . . . . . . . . 13 (.r‘(𝐼 mPoly (𝑆s 𝑅))) = (+g‘(mulGrp‘(𝐼 mPoly (𝑆s 𝑅))))
119 eqid 2729 . . . . . . . . . . . . . 14 (.r‘(𝑆s (𝐵m 𝐼))) = (.r‘(𝑆s (𝐵m 𝐼)))
120113, 119mgpplusg 20064 . . . . . . . . . . . . 13 (.r‘(𝑆s (𝐵m 𝐼))) = (+g‘(mulGrp‘(𝑆s (𝐵m 𝐼))))
121117, 118, 120mhmlin 18702 . . . . . . . . . . . 12 ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
122116, 40, 46, 121syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
123 mpfind.ct . . . . . . . . . . . 12 · = (.r𝑆)
1249, 13, 55, 56, 58, 59, 123, 119pwsmulrval 17430 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
125122, 124eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
126 ovex 7402 . . . . . . . . . . . . . . 15 (𝑓f · 𝑔) ∈ V
127 mpfind.wf . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
128126, 127elab 3643 . . . . . . . . . . . . . 14 ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ 𝜎)
129 oveq12 7378 . . . . . . . . . . . . . . 15 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓f · 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
130129eleq1d 2813 . . . . . . . . . . . . . 14 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
131128, 130bitr3id 285 . . . . . . . . . . . . 13 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜎 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
13293, 131imbi12d 344 . . . . . . . . . . . 12 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})))
133 mpfind.mu . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
13476, 77, 132, 133vtocl2 3529 . . . . . . . . . . 11 ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
13563, 69, 75, 134syl12anc 836 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
136125, 135eqeltrd 2828 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})
137 elpreima 7012 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
13816, 137syl 17 . . . . . . . . . 10 (𝜑 → ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
139138adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
140111, 136, 139mpbir2and 713 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
141140adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
1427mplassa 21964 . . . . . . . . . . . . 13 ((𝐼 ∈ V ∧ (𝑆s 𝑅) ∈ CRing) → (𝐼 mPoly (𝑆s 𝑅)) ∈ AssAlg)
14326, 30, 142syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐼 mPoly (𝑆s 𝑅)) ∈ AssAlg)
144 eqid 2729 . . . . . . . . . . . . 13 (Scalar‘(𝐼 mPoly (𝑆s 𝑅))) = (Scalar‘(𝐼 mPoly (𝑆s 𝑅)))
14525, 144asclrhm 21832 . . . . . . . . . . . 12 ((𝐼 mPoly (𝑆s 𝑅)) ∈ AssAlg → (algSc‘(𝐼 mPoly (𝑆s 𝑅))) ∈ ((Scalar‘(𝐼 mPoly (𝑆s 𝑅))) RingHom (𝐼 mPoly (𝑆s 𝑅))))
146 eqid 2729 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))) = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))
147146, 12rhmf 20405 . . . . . . . . . . . 12 ((algSc‘(𝐼 mPoly (𝑆s 𝑅))) ∈ ((Scalar‘(𝐼 mPoly (𝑆s 𝑅))) RingHom (𝐼 mPoly (𝑆s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
148143, 145, 1473syl 18 . . . . . . . . . . 11 (𝜑 → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
149148adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
1507, 26, 30mplsca 21955 . . . . . . . . . . . . 13 (𝜑 → (𝑆s 𝑅) = (Scalar‘(𝐼 mPoly (𝑆s 𝑅))))
151150fveq2d 6844 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑆s 𝑅)) = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
152151eleq2d 2814 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (Base‘(𝑆s 𝑅)) ↔ 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))))
153152biimpa 476 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
154149, 153ffvelcdmd 7039 . . . . . . . . 9 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
15526adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝐼 ∈ V)
15627adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑆 ∈ CRing)
15728adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑅 ∈ (SubRing‘𝑆))
15810subrgss 20492 . . . . . . . . . . . . . 14 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
1598, 10ressbas2 17184 . . . . . . . . . . . . . 14 (𝑅𝐵𝑅 = (Base‘(𝑆s 𝑅)))
16028, 158, 1593syl 18 . . . . . . . . . . . . 13 (𝜑𝑅 = (Base‘(𝑆s 𝑅)))
161160eleq2d 2814 . . . . . . . . . . . 12 (𝜑 → (𝑖𝑅𝑖 ∈ (Base‘(𝑆s 𝑅))))
162161biimpar 477 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑖𝑅)
1636, 7, 8, 10, 25, 155, 156, 157, 162evlssca 22029 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) = ((𝐵m 𝐼) × {𝑖}))
164 mpfind.co . . . . . . . . . . . . . 14 ((𝜑𝑓𝑅) → 𝜒)
165164ralrimiva 3125 . . . . . . . . . . . . 13 (𝜑 → ∀𝑓𝑅 𝜒)
166 ovex 7402 . . . . . . . . . . . . . . . . 17 (𝐵m 𝐼) ∈ V
167 vsnex 5384 . . . . . . . . . . . . . . . . 17 {𝑓} ∈ V
168166, 167xpex 7709 . . . . . . . . . . . . . . . 16 ((𝐵m 𝐼) × {𝑓}) ∈ V
169 mpfind.wa . . . . . . . . . . . . . . . 16 (𝑥 = ((𝐵m 𝐼) × {𝑓}) → (𝜓𝜒))
170168, 169elab 3643 . . . . . . . . . . . . . . 15 (((𝐵m 𝐼) × {𝑓}) ∈ {𝑥𝜓} ↔ 𝜒)
171 sneq 4595 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑖 → {𝑓} = {𝑖})
172171xpeq2d 5661 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑖 → ((𝐵m 𝐼) × {𝑓}) = ((𝐵m 𝐼) × {𝑖}))
173172eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑓 = 𝑖 → (((𝐵m 𝐼) × {𝑓}) ∈ {𝑥𝜓} ↔ ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓}))
174170, 173bitr3id 285 . . . . . . . . . . . . . 14 (𝑓 = 𝑖 → (𝜒 ↔ ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓}))
175174cbvralvw 3213 . . . . . . . . . . . . 13 (∀𝑓𝑅 𝜒 ↔ ∀𝑖𝑅 ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
176165, 175sylib 218 . . . . . . . . . . . 12 (𝜑 → ∀𝑖𝑅 ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
177176r19.21bi 3227 . . . . . . . . . . 11 ((𝜑𝑖𝑅) → ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
178162, 177syldan 591 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
179163, 178eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})
180 elpreima 7012 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})))
18116, 180syl 17 . . . . . . . . . 10 (𝜑 → (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})))
182181adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})))
183154, 179, 182mpbir2and 713 . . . . . . . 8 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
184183adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ 𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
18526adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝐼) → 𝐼 ∈ V)
18632adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝐼) → (𝑆s 𝑅) ∈ Ring)
187 simpr 484 . . . . . . . . . 10 ((𝜑𝑖𝐼) → 𝑖𝐼)
1887, 22, 12, 185, 186, 187mvrcl 21934 . . . . . . . . 9 ((𝜑𝑖𝐼) → ((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
18927adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝐼) → 𝑆 ∈ CRing)
19028adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝐼) → 𝑅 ∈ (SubRing‘𝑆))
1916, 22, 8, 10, 185, 189, 190, 187evlsvar 22030 . . . . . . . . . 10 ((𝜑𝑖𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)))
192 mpfind.pr . . . . . . . . . . . . . 14 ((𝜑𝑓𝐼) → 𝜃)
193166mptex 7179 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ V
194 mpfind.wb . . . . . . . . . . . . . . 15 (𝑥 = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) → (𝜓𝜃))
195193, 194elab 3643 . . . . . . . . . . . . . 14 ((𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓} ↔ 𝜃)
196192, 195sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑓𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓})
197196ralrimiva 3125 . . . . . . . . . . . 12 (𝜑 → ∀𝑓𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓})
198 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑓 = 𝑖 → (𝑔𝑓) = (𝑔𝑖))
199198mpteq2dv 5196 . . . . . . . . . . . . . 14 (𝑓 = 𝑖 → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)))
200199eleq1d 2813 . . . . . . . . . . . . 13 (𝑓 = 𝑖 → ((𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓} ↔ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓}))
201200cbvralvw 3213 . . . . . . . . . . . 12 (∀𝑓𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓} ↔ ∀𝑖𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓})
202197, 201sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑖𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓})
203202r19.21bi 3227 . . . . . . . . . 10 ((𝜑𝑖𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓})
204191, 203eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑖𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})
205 elpreima 7012 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})))
20616, 205syl 17 . . . . . . . . . 10 (𝜑 → (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})))
207206adantr 480 . . . . . . . . 9 ((𝜑𝑖𝐼) → (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})))
208188, 204, 207mpbir2and 713 . . . . . . . 8 ((𝜑𝑖𝐼) → ((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
209208adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ 𝑖𝐼) → ((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
210 simpr 484 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
21126adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → 𝐼 ∈ V)
21230adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (𝑆s 𝑅) ∈ CRing)
21321, 22, 7, 23, 24, 25, 12, 109, 141, 184, 209, 210, 211, 212mplind 22010 . . . . . 6 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → 𝑦 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
214 fvimacnvi 7006 . . . . . 6 ((Fun ((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑦 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥𝜓})
21520, 213, 214syl2an2r 685 . . . . 5 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥𝜓})
216 eleq1 2816 . . . . 5 ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴 → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥𝜓} ↔ 𝐴 ∈ {𝑥𝜓}))
217215, 216syl5ibcom 245 . . . 4 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴𝐴 ∈ {𝑥𝜓}))
218217rexlimdva 3134 . . 3 (𝜑 → (∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴𝐴 ∈ {𝑥𝜓}))
21919, 218mpd 15 . 2 (𝜑𝐴 ∈ {𝑥𝜓})
220 mpfind.wg . . . 4 (𝑥 = 𝐴 → (𝜓𝜌))
221220elabg 3640 . . 3 (𝐴𝑄 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
2221, 221syl 17 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
223219, 222mpbid 232 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3444  wss 3911  {csn 4585  cmpt 5183   × cxp 5629  ccnv 5630  ran crn 5632  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  m cmap 8776  Basecbs 17155  s cress 17176  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199  s cpws 17385   MndHom cmhm 18690   GrpHom cghm 19126  mulGrpcmgp 20060  Ringcrg 20153  CRingccrg 20154   RingHom crh 20389  SubRingcsubrg 20489  AssAlgcasa 21792  algSccascl 21794   mVar cmvr 21847   mPoly cmpl 21848   evalSub ces 22012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-lmod 20800  df-lss 20870  df-lsp 20910  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-evls 22014
This theorem is referenced by:  pf1ind  22275  mzpmfp  42728
  Copyright terms: Public domain W3C validator