| Step | Hyp | Ref
| Expression |
| 1 | | mpfind.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑄) |
| 2 | | mpfind.cq |
. . . . 5
⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
| 3 | 1, 2 | eleqtrdi 2843 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 4 | 2 | mpfrcl 22076 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |
| 5 | 1, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |
| 6 | | eqid 2734 |
. . . . . . . 8
⊢ ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅) |
| 7 | | eqid 2734 |
. . . . . . . 8
⊢ (𝐼 mPoly (𝑆 ↾s 𝑅)) = (𝐼 mPoly (𝑆 ↾s 𝑅)) |
| 8 | | eqid 2734 |
. . . . . . . 8
⊢ (𝑆 ↾s 𝑅) = (𝑆 ↾s 𝑅) |
| 9 | | eqid 2734 |
. . . . . . . 8
⊢ (𝑆 ↑s
(𝐵 ↑m 𝐼)) = (𝑆 ↑s (𝐵 ↑m 𝐼)) |
| 10 | | mpfind.cb |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑆) |
| 11 | 6, 7, 8, 9, 10 | evlsrhm 22079 |
. . . . . . 7
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 12 | | eqid 2734 |
. . . . . . . 8
⊢
(Base‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) = (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) |
| 13 | | eqid 2734 |
. . . . . . . 8
⊢
(Base‘(𝑆
↑s (𝐵 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐵 ↑m 𝐼))) |
| 14 | 12, 13 | rhmf 20458 |
. . . . . . 7
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 15 | 5, 11, 14 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 16 | 15 | ffnd 6718 |
. . . . 5
⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 17 | | fvelrnb 6950 |
. . . . 5
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴)) |
| 18 | 16, 17 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴)) |
| 19 | 3, 18 | mpbid 232 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴) |
| 20 | 15 | ffund 6721 |
. . . . . 6
⊢ (𝜑 → Fun ((𝐼 evalSub 𝑆)‘𝑅)) |
| 21 | | eqid 2734 |
. . . . . . 7
⊢
(Base‘(𝑆
↾s 𝑅)) =
(Base‘(𝑆
↾s 𝑅)) |
| 22 | | eqid 2734 |
. . . . . . 7
⊢ (𝐼 mVar (𝑆 ↾s 𝑅)) = (𝐼 mVar (𝑆 ↾s 𝑅)) |
| 23 | | eqid 2734 |
. . . . . . 7
⊢
(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (+g‘(𝐼 mPoly (𝑆 ↾s 𝑅))) |
| 24 | | eqid 2734 |
. . . . . . 7
⊢
(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (.r‘(𝐼 mPoly (𝑆 ↾s 𝑅))) |
| 25 | | eqid 2734 |
. . . . . . 7
⊢
(algSc‘(𝐼
mPoly (𝑆
↾s 𝑅))) =
(algSc‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) |
| 26 | 5 | simp1d 1142 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈ V) |
| 27 | 5 | simp2d 1143 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ CRing) |
| 28 | 5 | simp3d 1144 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| 29 | 8 | subrgcrng 20548 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑆 ↾s 𝑅) ∈ CRing) |
| 30 | 27, 28, 29 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ CRing) |
| 31 | | crngring 20215 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ↾s 𝑅) ∈ CRing → (𝑆 ↾s 𝑅) ∈ Ring) |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ Ring) |
| 33 | 7, 26, 32 | mplringd 22010 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
| 34 | 33 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
| 35 | | simprl 770 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 36 | | elpreima 7059 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}))) |
| 37 | 16, 36 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}))) |
| 38 | 37 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}))) |
| 39 | 35, 38 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓})) |
| 40 | 39 | simpld 494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 41 | | simprr 772 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 42 | | elpreima 7059 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) |
| 43 | 16, 42 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) |
| 45 | 41, 44 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})) |
| 46 | 45 | simpld 494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 47 | 12, 23 | ringacl 20248 |
. . . . . . . . . 10
⊢ (((𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 48 | 34, 40, 46, 47 | syl3anc 1372 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 49 | | rhmghm 20457 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) GrpHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 50 | 5, 11, 49 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) GrpHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 51 | 50 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) GrpHom (𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 52 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢
(+g‘(𝑆 ↑s (𝐵 ↑m 𝐼))) =
(+g‘(𝑆
↑s (𝐵 ↑m 𝐼))) |
| 53 | 12, 23, 52 | ghmlin 19213 |
. . . . . . . . . . . 12
⊢ ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) GrpHom (𝑆 ↑s (𝐵 ↑m 𝐼))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆 ↑s (𝐵 ↑m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 54 | 51, 40, 46, 53 | syl3anc 1372 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆 ↑s (𝐵 ↑m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 55 | 27 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝑆 ∈ CRing) |
| 56 | | ovexd 7449 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝐵 ↑m 𝐼) ∈ V) |
| 57 | 15 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 58 | 57, 40 | ffvelcdmd 7086 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 59 | 57, 46 | ffvelcdmd 7086 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ (Base‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 60 | | mpfind.cp |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝑆) |
| 61 | 9, 13, 55, 56, 58, 59, 60, 52 | pwsplusgval 17511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆 ↑s (𝐵 ↑m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 62 | 54, 61 | eqtrd 2769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 63 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → 𝜑) |
| 64 | | fnfvelrn 7081 |
. . . . . . . . . . . . . 14
⊢ ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 65 | 16, 40, 64 | syl2an2r 685 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 66 | 65, 2 | eleqtrrdi 2844 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄) |
| 67 | | fvimacnvi 7053 |
. . . . . . . . . . . . 13
⊢ ((Fun
((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) |
| 68 | 20, 35, 67 | syl2an2r 685 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) |
| 69 | 66, 68 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓})) |
| 70 | | fnfvelrn 7081 |
. . . . . . . . . . . . . 14
⊢ ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 71 | 16, 46, 70 | syl2an2r 685 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
| 72 | 71, 2 | eleqtrrdi 2844 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄) |
| 73 | | fvimacnvi 7053 |
. . . . . . . . . . . . 13
⊢ ((Fun
((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}) |
| 74 | 20, 41, 73 | syl2an2r 685 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}) |
| 75 | 72, 74 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})) |
| 76 | | fvex 6900 |
. . . . . . . . . . . 12
⊢ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ V |
| 77 | | fvex 6900 |
. . . . . . . . . . . 12
⊢ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ V |
| 78 | | eleq1 2821 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓 ∈ 𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄)) |
| 79 | | vex 3468 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑓 ∈ V |
| 80 | | mpfind.wc |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑓 → (𝜓 ↔ 𝜏)) |
| 81 | 79, 80 | elab 3663 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ {𝑥 ∣ 𝜓} ↔ 𝜏) |
| 82 | | eleq1 2821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓 ∈ {𝑥 ∣ 𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓})) |
| 83 | 81, 82 | bitr3id 285 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝜏 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓})) |
| 84 | 78, 83 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → ((𝑓 ∈ 𝑄 ∧ 𝜏) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}))) |
| 85 | | eleq1 2821 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔 ∈ 𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄)) |
| 86 | | vex 3468 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑔 ∈ V |
| 87 | | mpfind.wd |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑔 → (𝜓 ↔ 𝜂)) |
| 88 | 86, 87 | elab 3663 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ {𝑥 ∣ 𝜓} ↔ 𝜂) |
| 89 | | eleq1 2821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔 ∈ {𝑥 ∣ 𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})) |
| 90 | 88, 89 | bitr3id 285 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝜂 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})) |
| 91 | 85, 90 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → ((𝑔 ∈ 𝑄 ∧ 𝜂) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) |
| 92 | 84, 91 | bi2anan9 638 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂)) ↔ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓})))) |
| 93 | 92 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) ↔ (𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))))) |
| 94 | | ovex 7447 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∘f + 𝑔) ∈ V |
| 95 | | mpfind.we |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑓 ∘f + 𝑔) → (𝜓 ↔ 𝜁)) |
| 96 | 94, 95 | elab 3663 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∘f + 𝑔) ∈ {𝑥 ∣ 𝜓} ↔ 𝜁) |
| 97 | | oveq12 7423 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓 ∘f + 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 98 | 97 | eleq1d 2818 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓 ∘f + 𝑔) ∈ {𝑥 ∣ 𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓})) |
| 99 | 96, 98 | bitr3id 285 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜁 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓})) |
| 100 | 93, 99 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜁) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 101 | | mpfind.ad |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜁) |
| 102 | 76, 77, 100, 101 | vtocl2 3550 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}) |
| 103 | 63, 69, 75, 102 | syl12anc 836 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}) |
| 104 | 62, 103 | eqeltrd 2833 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}) |
| 105 | | elpreima 7059 |
. . . . . . . . . . 11
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 106 | 16, 105 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 107 | 106 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 108 | 48, 104, 107 | mpbir2and 713 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 109 | 108 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 110 | 12, 24 | ringcl 20220 |
. . . . . . . . . 10
⊢ (((𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 111 | 34, 40, 46, 110 | syl3anc 1372 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 112 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢
(mulGrp‘(𝐼
mPoly (𝑆
↾s 𝑅))) =
(mulGrp‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) |
| 113 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢
(mulGrp‘(𝑆
↑s (𝐵 ↑m 𝐼))) = (mulGrp‘(𝑆 ↑s (𝐵 ↑m 𝐼))) |
| 114 | 112, 113 | rhmmhm 20452 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅))) MndHom (mulGrp‘(𝑆 ↑s (𝐵 ↑m 𝐼))))) |
| 115 | 5, 11, 114 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅))) MndHom (mulGrp‘(𝑆 ↑s (𝐵 ↑m 𝐼))))) |
| 116 | 115 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅))) MndHom (mulGrp‘(𝑆 ↑s (𝐵 ↑m 𝐼))))) |
| 117 | 112, 12 | mgpbas 20115 |
. . . . . . . . . . . . 13
⊢
(Base‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) =
(Base‘(mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 118 | 112, 24 | mgpplusg 20114 |
. . . . . . . . . . . . 13
⊢
(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅))) =
(+g‘(mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 119 | | eqid 2734 |
. . . . . . . . . . . . . 14
⊢
(.r‘(𝑆 ↑s (𝐵 ↑m 𝐼))) =
(.r‘(𝑆
↑s (𝐵 ↑m 𝐼))) |
| 120 | 113, 119 | mgpplusg 20114 |
. . . . . . . . . . . . 13
⊢
(.r‘(𝑆 ↑s (𝐵 ↑m 𝐼))) =
(+g‘(mulGrp‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) |
| 121 | 117, 118,
120 | mhmlin 18780 |
. . . . . . . . . . . 12
⊢ ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆 ↾s 𝑅))) MndHom (mulGrp‘(𝑆 ↑s (𝐵 ↑m 𝐼)))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆 ↑s (𝐵 ↑m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 122 | 116, 40, 46, 121 | syl3anc 1372 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆 ↑s (𝐵 ↑m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 123 | | mpfind.ct |
. . . . . . . . . . . 12
⊢ · =
(.r‘𝑆) |
| 124 | 9, 13, 55, 56, 58, 59, 123, 119 | pwsmulrval 17512 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆 ↑s (𝐵 ↑m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 125 | 122, 124 | eqtrd 2769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 126 | | ovex 7447 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∘f · 𝑔) ∈ V |
| 127 | | mpfind.wf |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑓 ∘f · 𝑔) → (𝜓 ↔ 𝜎)) |
| 128 | 126, 127 | elab 3663 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∘f · 𝑔) ∈ {𝑥 ∣ 𝜓} ↔ 𝜎) |
| 129 | | oveq12 7423 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓 ∘f · 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗))) |
| 130 | 129 | eleq1d 2818 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓 ∘f · 𝑔) ∈ {𝑥 ∣ 𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓})) |
| 131 | 128, 130 | bitr3id 285 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜎 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓})) |
| 132 | 93, 131 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜎) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 133 | | mpfind.mu |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜎) |
| 134 | 76, 77, 132, 133 | vtocl2 3550 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥 ∣ 𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}) |
| 135 | 63, 69, 75, 134 | syl12anc 836 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥 ∣ 𝜓}) |
| 136 | 125, 135 | eqeltrd 2833 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}) |
| 137 | | elpreima 7059 |
. . . . . . . . . . 11
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 138 | 16, 137 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 139 | 138 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗)) ∈ {𝑥 ∣ 𝜓}))) |
| 140 | 111, 136,
139 | mpbir2and 713 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 141 | 140 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∧ (𝑖 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ∧ 𝑗 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆 ↾s 𝑅)))𝑗) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 142 | 7 | mplassa 22009 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ V ∧ (𝑆 ↾s 𝑅) ∈ CRing) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ AssAlg) |
| 143 | 26, 30, 142 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ AssAlg) |
| 144 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢
(Scalar‘(𝐼
mPoly (𝑆
↾s 𝑅))) =
(Scalar‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) |
| 145 | 25, 144 | asclrhm 21877 |
. . . . . . . . . . . 12
⊢ ((𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ AssAlg → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∈ ((Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))) RingHom (𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 146 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢
(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 147 | 146, 12 | rhmf 20458 |
. . . . . . . . . . . 12
⊢
((algSc‘(𝐼
mPoly (𝑆
↾s 𝑅)))
∈ ((Scalar‘(𝐼
mPoly (𝑆
↾s 𝑅)))
RingHom (𝐼 mPoly (𝑆 ↾s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 148 | 143, 145,
147 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 149 | 148 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 150 | 7, 26, 30 | mplsca 22000 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆 ↾s 𝑅) = (Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 151 | 150 | fveq2d 6891 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Base‘(𝑆 ↾s 𝑅)) =
(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
| 152 | 151 | eleq2d 2819 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑖 ∈ (Base‘(𝑆 ↾s 𝑅)) ↔ 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))))) |
| 153 | 152 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
| 154 | 149, 153 | ffvelcdmd 7086 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 155 | 26 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝐼 ∈ V) |
| 156 | 27 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝑆 ∈ CRing) |
| 157 | 28 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝑅 ∈ (SubRing‘𝑆)) |
| 158 | 10 | subrgss 20545 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
| 159 | 8, 10 | ressbas2 17265 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ⊆ 𝐵 → 𝑅 = (Base‘(𝑆 ↾s 𝑅))) |
| 160 | 28, 158, 159 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 = (Base‘(𝑆 ↾s 𝑅))) |
| 161 | 160 | eleq2d 2819 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑖 ∈ 𝑅 ↔ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅)))) |
| 162 | 161 | biimpar 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → 𝑖 ∈ 𝑅) |
| 163 | 6, 7, 8, 10, 25, 155, 156, 157, 162 | evlssca 22080 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) = ((𝐵 ↑m 𝐼) × {𝑖})) |
| 164 | | mpfind.co |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑅) → 𝜒) |
| 165 | 164 | ralrimiva 3133 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑓 ∈ 𝑅 𝜒) |
| 166 | | ovex 7447 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ↑m 𝐼) ∈ V |
| 167 | | vsnex 5416 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑓} ∈ V |
| 168 | 166, 167 | xpex 7756 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ↑m 𝐼) × {𝑓}) ∈ V |
| 169 | | mpfind.wa |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = ((𝐵 ↑m 𝐼) × {𝑓}) → (𝜓 ↔ 𝜒)) |
| 170 | 168, 169 | elab 3663 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵 ↑m 𝐼) × {𝑓}) ∈ {𝑥 ∣ 𝜓} ↔ 𝜒) |
| 171 | | sneq 4618 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑖 → {𝑓} = {𝑖}) |
| 172 | 171 | xpeq2d 5697 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑖 → ((𝐵 ↑m 𝐼) × {𝑓}) = ((𝐵 ↑m 𝐼) × {𝑖})) |
| 173 | 172 | eleq1d 2818 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑖 → (((𝐵 ↑m 𝐼) × {𝑓}) ∈ {𝑥 ∣ 𝜓} ↔ ((𝐵 ↑m 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓})) |
| 174 | 170, 173 | bitr3id 285 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑖 → (𝜒 ↔ ((𝐵 ↑m 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓})) |
| 175 | 174 | cbvralvw 3224 |
. . . . . . . . . . . . 13
⊢
(∀𝑓 ∈
𝑅 𝜒 ↔ ∀𝑖 ∈ 𝑅 ((𝐵 ↑m 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓}) |
| 176 | 165, 175 | sylib 218 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑖 ∈ 𝑅 ((𝐵 ↑m 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓}) |
| 177 | 176 | r19.21bi 3238 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑅) → ((𝐵 ↑m 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓}) |
| 178 | 162, 177 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → ((𝐵 ↑m 𝐼) × {𝑖}) ∈ {𝑥 ∣ 𝜓}) |
| 179 | 163, 178 | eqeltrd 2833 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
| 180 | | elpreima 7059 |
. . . . . . . . . . 11
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
| 181 | 16, 180 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
| 182 | 181 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
| 183 | 154, 179,
182 | mpbir2and 713 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 184 | 183 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∧ 𝑖 ∈ (Base‘(𝑆 ↾s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 185 | 26 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ V) |
| 186 | 32 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 ↾s 𝑅) ∈ Ring) |
| 187 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
| 188 | 7, 22, 12, 185, 186, 187 | mvrcl 21979 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 189 | 27 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑆 ∈ CRing) |
| 190 | 28 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑅 ∈ (SubRing‘𝑆)) |
| 191 | 6, 22, 8, 10, 185, 189, 190, 187 | evlsvar 22081 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑖))) |
| 192 | | mpfind.pr |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐼) → 𝜃) |
| 193 | 166 | mptex 7226 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) ∈ V |
| 194 | | mpfind.wb |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) → (𝜓 ↔ 𝜃)) |
| 195 | 193, 194 | elab 3663 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓} ↔ 𝜃) |
| 196 | 192, 195 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐼) → (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓}) |
| 197 | 196 | ralrimiva 3133 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑓 ∈ 𝐼 (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓}) |
| 198 | | fveq2 6887 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑖 → (𝑔‘𝑓) = (𝑔‘𝑖)) |
| 199 | 198 | mpteq2dv 5226 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑖 → (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑖))) |
| 200 | 199 | eleq1d 2818 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑖 → ((𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓} ↔ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑖)) ∈ {𝑥 ∣ 𝜓})) |
| 201 | 200 | cbvralvw 3224 |
. . . . . . . . . . . 12
⊢
(∀𝑓 ∈
𝐼 (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) ∈ {𝑥 ∣ 𝜓} ↔ ∀𝑖 ∈ 𝐼 (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
| 202 | 197, 201 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑖 ∈ 𝐼 (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
| 203 | 202 | r19.21bi 3238 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
| 204 | 191, 203 | eqeltrd 2833 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) ∈ {𝑥 ∣ 𝜓}) |
| 205 | | elpreima 7059 |
. . . . . . . . . . 11
⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
| 206 | 16, 205 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
| 207 | 206 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓}) ↔ (((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖)) ∈ {𝑥 ∣ 𝜓}))) |
| 208 | 188, 204,
207 | mpbir2and 713 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 209 | 208 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∧ 𝑖 ∈ 𝐼) → ((𝐼 mVar (𝑆 ↾s 𝑅))‘𝑖) ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 210 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
| 211 | 26 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → 𝐼 ∈ V) |
| 212 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (𝑆 ↾s 𝑅) ∈ CRing) |
| 213 | 21, 22, 7, 23, 24, 25, 12, 109, 141, 184, 209, 210, 211, 212 | mplind 22061 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → 𝑦 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) |
| 214 | | fvimacnvi 7053 |
. . . . . 6
⊢ ((Fun
((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑦 ∈ (◡((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥 ∣ 𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥 ∣ 𝜓}) |
| 215 | 20, 213, 214 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥 ∣ 𝜓}) |
| 216 | | eleq1 2821 |
. . . . 5
⊢ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴 → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥 ∣ 𝜓} ↔ 𝐴 ∈ {𝑥 ∣ 𝜓})) |
| 217 | 215, 216 | syl5ibcom 245 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴 → 𝐴 ∈ {𝑥 ∣ 𝜓})) |
| 218 | 217 | rexlimdva 3142 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴 → 𝐴 ∈ {𝑥 ∣ 𝜓})) |
| 219 | 19, 218 | mpd 15 |
. 2
⊢ (𝜑 → 𝐴 ∈ {𝑥 ∣ 𝜓}) |
| 220 | | mpfind.wg |
. . . 4
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜌)) |
| 221 | 220 | elabg 3660 |
. . 3
⊢ (𝐴 ∈ 𝑄 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜌)) |
| 222 | 1, 221 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜌)) |
| 223 | 219, 222 | mpbid 232 |
1
⊢ (𝜑 → 𝜌) |