MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfind Structured version   Visualization version   GIF version

Theorem mpfind 22042
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
mpfind.cb 𝐵 = (Base‘𝑆)
mpfind.cp + = (+g𝑆)
mpfind.ct · = (.r𝑆)
mpfind.cq 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
mpfind.ad ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
mpfind.mu ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
mpfind.wa (𝑥 = ((𝐵m 𝐼) × {𝑓}) → (𝜓𝜒))
mpfind.wb (𝑥 = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) → (𝜓𝜃))
mpfind.wc (𝑥 = 𝑓 → (𝜓𝜏))
mpfind.wd (𝑥 = 𝑔 → (𝜓𝜂))
mpfind.we (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
mpfind.wf (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
mpfind.wg (𝑥 = 𝐴 → (𝜓𝜌))
mpfind.co ((𝜑𝑓𝑅) → 𝜒)
mpfind.pr ((𝜑𝑓𝐼) → 𝜃)
mpfind.a (𝜑𝐴𝑄)
Assertion
Ref Expression
mpfind (𝜑𝜌)
Distinct variable groups:   𝜒,𝑥   𝜂,𝑥   𝜑,𝑓,𝑔   𝜓,𝑓,𝑔   𝜌,𝑥   𝜎,𝑥   𝜏,𝑥   𝜃,𝑥   𝜁,𝑥   𝑥,𝐴   𝐵,𝑓,𝑔,𝑥   𝑓,𝐼,𝑔,𝑥   + ,𝑓,𝑔,𝑥   𝑄,𝑓,𝑔   𝑅,𝑓,𝑔   𝑆,𝑓,𝑔   · ,𝑓,𝑔,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑓,𝑔)   𝜃(𝑓,𝑔)   𝜏(𝑓,𝑔)   𝜂(𝑓,𝑔)   𝜁(𝑓,𝑔)   𝜎(𝑓,𝑔)   𝜌(𝑓,𝑔)   𝐴(𝑓,𝑔)   𝑄(𝑥)   𝑅(𝑥)   𝑆(𝑥)

Proof of Theorem mpfind
Dummy variables 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpfind.a . . . . 5 (𝜑𝐴𝑄)
2 mpfind.cq . . . . 5 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
31, 2eleqtrdi 2841 . . . 4 (𝜑𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
42mpfrcl 22020 . . . . . . . 8 (𝐴𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))
51, 4syl 17 . . . . . . 7 (𝜑 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))
6 eqid 2731 . . . . . . . 8 ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅)
7 eqid 2731 . . . . . . . 8 (𝐼 mPoly (𝑆s 𝑅)) = (𝐼 mPoly (𝑆s 𝑅))
8 eqid 2731 . . . . . . . 8 (𝑆s 𝑅) = (𝑆s 𝑅)
9 eqid 2731 . . . . . . . 8 (𝑆s (𝐵m 𝐼)) = (𝑆s (𝐵m 𝐼))
10 mpfind.cb . . . . . . . 8 𝐵 = (Base‘𝑆)
116, 7, 8, 9, 10evlsrhm 22023 . . . . . . 7 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))))
12 eqid 2731 . . . . . . . 8 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(𝐼 mPoly (𝑆s 𝑅)))
13 eqid 2731 . . . . . . . 8 (Base‘(𝑆s (𝐵m 𝐼))) = (Base‘(𝑆s (𝐵m 𝐼)))
1412, 13rhmf 20402 . . . . . . 7 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
155, 11, 143syl 18 . . . . . 6 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
1615ffnd 6652 . . . . 5 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
17 fvelrnb 6882 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴))
1816, 17syl 17 . . . 4 (𝜑 → (𝐴 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) ↔ ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴))
193, 18mpbid 232 . . 3 (𝜑 → ∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴)
2015ffund 6655 . . . . . 6 (𝜑 → Fun ((𝐼 evalSub 𝑆)‘𝑅))
21 eqid 2731 . . . . . . 7 (Base‘(𝑆s 𝑅)) = (Base‘(𝑆s 𝑅))
22 eqid 2731 . . . . . . 7 (𝐼 mVar (𝑆s 𝑅)) = (𝐼 mVar (𝑆s 𝑅))
23 eqid 2731 . . . . . . 7 (+g‘(𝐼 mPoly (𝑆s 𝑅))) = (+g‘(𝐼 mPoly (𝑆s 𝑅)))
24 eqid 2731 . . . . . . 7 (.r‘(𝐼 mPoly (𝑆s 𝑅))) = (.r‘(𝐼 mPoly (𝑆s 𝑅)))
25 eqid 2731 . . . . . . 7 (algSc‘(𝐼 mPoly (𝑆s 𝑅))) = (algSc‘(𝐼 mPoly (𝑆s 𝑅)))
265simp1d 1142 . . . . . . . . . . . 12 (𝜑𝐼 ∈ V)
275simp2d 1143 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ CRing)
285simp3d 1144 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ (SubRing‘𝑆))
298subrgcrng 20490 . . . . . . . . . . . . . 14 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑆s 𝑅) ∈ CRing)
3027, 28, 29syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑆s 𝑅) ∈ CRing)
31 crngring 20163 . . . . . . . . . . . . 13 ((𝑆s 𝑅) ∈ CRing → (𝑆s 𝑅) ∈ Ring)
3230, 31syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑆s 𝑅) ∈ Ring)
337, 26, 32mplringd 21960 . . . . . . . . . . 11 (𝜑 → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
3433adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
35 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
36 elpreima 6991 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
3716, 36syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
3837adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
3935, 38mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
4039simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
41 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
42 elpreima 6991 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
4316, 42syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
4443adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
4541, 44mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
4645simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
4712, 23ringacl 20196 . . . . . . . . . 10 (((𝐼 mPoly (𝑆s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
4834, 40, 46, 47syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
49 rhmghm 20401 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))))
505, 11, 493syl 18 . . . . . . . . . . . . 13 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))))
5150adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))))
52 eqid 2731 . . . . . . . . . . . . 13 (+g‘(𝑆s (𝐵m 𝐼))) = (+g‘(𝑆s (𝐵m 𝐼)))
5312, 23, 52ghmlin 19133 . . . . . . . . . . . 12 ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) GrpHom (𝑆s (𝐵m 𝐼))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
5451, 40, 46, 53syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
5527adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝑆 ∈ CRing)
56 ovexd 7381 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝐵m 𝐼) ∈ V)
5715adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s (𝐵m 𝐼))))
5857, 40ffvelcdmd 7018 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ (Base‘(𝑆s (𝐵m 𝐼))))
5957, 46ffvelcdmd 7018 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ (Base‘(𝑆s (𝐵m 𝐼))))
60 mpfind.cp . . . . . . . . . . . 12 + = (+g𝑆)
619, 13, 55, 56, 58, 59, 60, 52pwsplusgval 17394 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(+g‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
6254, 61eqtrd 2766 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
63 simpl 482 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → 𝜑)
64 fnfvelrn 7013 . . . . . . . . . . . . . 14 ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
6516, 40, 64syl2an2r 685 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
6665, 2eleqtrrdi 2842 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄)
67 fvimacnvi 6985 . . . . . . . . . . . . 13 ((Fun ((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})
6820, 35, 67syl2an2r 685 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})
6966, 68jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
70 fnfvelrn 7013 . . . . . . . . . . . . . 14 ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
7116, 46, 70syl2an2r 685 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅))
7271, 2eleqtrrdi 2842 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄)
73 fvimacnvi 6985 . . . . . . . . . . . . 13 ((Fun ((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})
7420, 41, 73syl2an2r 685 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})
7572, 74jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
76 fvex 6835 . . . . . . . . . . . 12 (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ V
77 fvex 6835 . . . . . . . . . . . 12 (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ V
78 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄))
79 vex 3440 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
80 mpfind.wc . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑓 → (𝜓𝜏))
8179, 80elab 3630 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ {𝑥𝜓} ↔ 𝜏)
82 eleq1 2819 . . . . . . . . . . . . . . . . 17 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝑓 ∈ {𝑥𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
8381, 82bitr3id 285 . . . . . . . . . . . . . . . 16 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → (𝜏 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}))
8478, 83anbi12d 632 . . . . . . . . . . . . . . 15 (𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) → ((𝑓𝑄𝜏) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓})))
85 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔𝑄 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄))
86 vex 3440 . . . . . . . . . . . . . . . . . 18 𝑔 ∈ V
87 mpfind.wd . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑔 → (𝜓𝜂))
8886, 87elab 3630 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ {𝑥𝜓} ↔ 𝜂)
89 eleq1 2819 . . . . . . . . . . . . . . . . 17 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝑔 ∈ {𝑥𝜓} ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
9088, 89bitr3id 285 . . . . . . . . . . . . . . . 16 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → (𝜂 ↔ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))
9185, 90anbi12d 632 . . . . . . . . . . . . . . 15 (𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) → ((𝑔𝑄𝜂) ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))
9284, 91bi2anan9 638 . . . . . . . . . . . . . 14 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) ↔ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))))
9392anbi2d 630 . . . . . . . . . . . . 13 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) ↔ (𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓})))))
94 ovex 7379 . . . . . . . . . . . . . . 15 (𝑓f + 𝑔) ∈ V
95 mpfind.we . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
9694, 95elab 3630 . . . . . . . . . . . . . 14 ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ 𝜁)
97 oveq12 7355 . . . . . . . . . . . . . . 15 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓f + 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
9897eleq1d 2816 . . . . . . . . . . . . . 14 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
9996, 98bitr3id 285 . . . . . . . . . . . . 13 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜁 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
10093, 99imbi12d 344 . . . . . . . . . . . 12 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})))
101 mpfind.ad . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
10276, 77, 100, 101vtocl2 3518 . . . . . . . . . . 11 ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
10363, 69, 75, 102syl12anc 836 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f + (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
10462, 103eqeltrd 2831 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})
105 elpreima 6991 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
10616, 105syl 17 . . . . . . . . . 10 (𝜑 → ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
107106adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
10848, 104, 107mpbir2and 713 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
109108adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(+g‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
11012, 24ringcl 20168 . . . . . . . . . 10 (((𝐼 mPoly (𝑆s 𝑅)) ∈ Ring ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
11134, 40, 46, 110syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
112 eqid 2731 . . . . . . . . . . . . . . 15 (mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) = (mulGrp‘(𝐼 mPoly (𝑆s 𝑅)))
113 eqid 2731 . . . . . . . . . . . . . . 15 (mulGrp‘(𝑆s (𝐵m 𝐼))) = (mulGrp‘(𝑆s (𝐵m 𝐼)))
114112, 113rhmmhm 20397 . . . . . . . . . . . . . 14 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s (𝐵m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))))
1155, 11, 1143syl 18 . . . . . . . . . . . . 13 (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))))
116115adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))))
117112, 12mgpbas 20063 . . . . . . . . . . . . 13 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(mulGrp‘(𝐼 mPoly (𝑆s 𝑅))))
118112, 24mgpplusg 20062 . . . . . . . . . . . . 13 (.r‘(𝐼 mPoly (𝑆s 𝑅))) = (+g‘(mulGrp‘(𝐼 mPoly (𝑆s 𝑅))))
119 eqid 2731 . . . . . . . . . . . . . 14 (.r‘(𝑆s (𝐵m 𝐼))) = (.r‘(𝑆s (𝐵m 𝐼)))
120113, 119mgpplusg 20062 . . . . . . . . . . . . 13 (.r‘(𝑆s (𝐵m 𝐼))) = (+g‘(mulGrp‘(𝑆s (𝐵m 𝐼))))
121117, 118, 120mhmlin 18701 . . . . . . . . . . . 12 ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((mulGrp‘(𝐼 mPoly (𝑆s 𝑅))) MndHom (mulGrp‘(𝑆s (𝐵m 𝐼)))) ∧ 𝑖 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ 𝑗 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
122116, 40, 46, 121syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
123 mpfind.ct . . . . . . . . . . . 12 · = (.r𝑆)
1249, 13, 55, 56, 58, 59, 123, 119pwsmulrval 17395 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖)(.r‘(𝑆s (𝐵m 𝐼)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
125122, 124eqtrd 2766 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
126 ovex 7379 . . . . . . . . . . . . . . 15 (𝑓f · 𝑔) ∈ V
127 mpfind.wf . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
128126, 127elab 3630 . . . . . . . . . . . . . 14 ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ 𝜎)
129 oveq12 7355 . . . . . . . . . . . . . . 15 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝑓f · 𝑔) = ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)))
130129eleq1d 2816 . . . . . . . . . . . . . 14 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
131128, 130bitr3id 285 . . . . . . . . . . . . 13 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (𝜎 ↔ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓}))
13293, 131imbi12d 344 . . . . . . . . . . . 12 ((𝑓 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∧ 𝑔 = (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) → (((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎) ↔ ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})))
133 mpfind.mu . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
13476, 77, 132, 133vtocl2 3518 . . . . . . . . . . 11 ((𝜑 ∧ (((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∈ {𝑥𝜓}) ∧ ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ 𝑄 ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗) ∈ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
13563, 69, 75, 134syl12anc 836 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑖) ∘f · (((𝐼 evalSub 𝑆)‘𝑅)‘𝑗)) ∈ {𝑥𝜓})
136125, 135eqeltrd 2831 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})
137 elpreima 6991 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
13816, 137syl 17 . . . . . . . . . 10 (𝜑 → ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
139138adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ ((𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘(𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗)) ∈ {𝑥𝜓})))
140111, 136, 139mpbir2and 713 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
141140adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ (𝑖 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ∧ 𝑗 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))) → (𝑖(.r‘(𝐼 mPoly (𝑆s 𝑅)))𝑗) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
1427mplassa 21959 . . . . . . . . . . . . 13 ((𝐼 ∈ V ∧ (𝑆s 𝑅) ∈ CRing) → (𝐼 mPoly (𝑆s 𝑅)) ∈ AssAlg)
14326, 30, 142syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐼 mPoly (𝑆s 𝑅)) ∈ AssAlg)
144 eqid 2731 . . . . . . . . . . . . 13 (Scalar‘(𝐼 mPoly (𝑆s 𝑅))) = (Scalar‘(𝐼 mPoly (𝑆s 𝑅)))
14525, 144asclrhm 21827 . . . . . . . . . . . 12 ((𝐼 mPoly (𝑆s 𝑅)) ∈ AssAlg → (algSc‘(𝐼 mPoly (𝑆s 𝑅))) ∈ ((Scalar‘(𝐼 mPoly (𝑆s 𝑅))) RingHom (𝐼 mPoly (𝑆s 𝑅))))
146 eqid 2731 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))) = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))
147146, 12rhmf 20402 . . . . . . . . . . . 12 ((algSc‘(𝐼 mPoly (𝑆s 𝑅))) ∈ ((Scalar‘(𝐼 mPoly (𝑆s 𝑅))) RingHom (𝐼 mPoly (𝑆s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
148143, 145, 1473syl 18 . . . . . . . . . . 11 (𝜑 → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
149148adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (algSc‘(𝐼 mPoly (𝑆s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆s 𝑅))))
1507, 26, 30mplsca 21950 . . . . . . . . . . . . 13 (𝜑 → (𝑆s 𝑅) = (Scalar‘(𝐼 mPoly (𝑆s 𝑅))))
151150fveq2d 6826 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑆s 𝑅)) = (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
152151eleq2d 2817 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (Base‘(𝑆s 𝑅)) ↔ 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅))))))
153152biimpa 476 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑖 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆s 𝑅)))))
154149, 153ffvelcdmd 7018 . . . . . . . . 9 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
15526adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝐼 ∈ V)
15627adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑆 ∈ CRing)
15728adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑅 ∈ (SubRing‘𝑆))
15810subrgss 20487 . . . . . . . . . . . . . 14 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
1598, 10ressbas2 17149 . . . . . . . . . . . . . 14 (𝑅𝐵𝑅 = (Base‘(𝑆s 𝑅)))
16028, 158, 1593syl 18 . . . . . . . . . . . . 13 (𝜑𝑅 = (Base‘(𝑆s 𝑅)))
161160eleq2d 2817 . . . . . . . . . . . 12 (𝜑 → (𝑖𝑅𝑖 ∈ (Base‘(𝑆s 𝑅))))
162161biimpar 477 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → 𝑖𝑅)
1636, 7, 8, 10, 25, 155, 156, 157, 162evlssca 22024 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) = ((𝐵m 𝐼) × {𝑖}))
164 mpfind.co . . . . . . . . . . . . . 14 ((𝜑𝑓𝑅) → 𝜒)
165164ralrimiva 3124 . . . . . . . . . . . . 13 (𝜑 → ∀𝑓𝑅 𝜒)
166 ovex 7379 . . . . . . . . . . . . . . . . 17 (𝐵m 𝐼) ∈ V
167 vsnex 5370 . . . . . . . . . . . . . . . . 17 {𝑓} ∈ V
168166, 167xpex 7686 . . . . . . . . . . . . . . . 16 ((𝐵m 𝐼) × {𝑓}) ∈ V
169 mpfind.wa . . . . . . . . . . . . . . . 16 (𝑥 = ((𝐵m 𝐼) × {𝑓}) → (𝜓𝜒))
170168, 169elab 3630 . . . . . . . . . . . . . . 15 (((𝐵m 𝐼) × {𝑓}) ∈ {𝑥𝜓} ↔ 𝜒)
171 sneq 4583 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑖 → {𝑓} = {𝑖})
172171xpeq2d 5644 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑖 → ((𝐵m 𝐼) × {𝑓}) = ((𝐵m 𝐼) × {𝑖}))
173172eleq1d 2816 . . . . . . . . . . . . . . 15 (𝑓 = 𝑖 → (((𝐵m 𝐼) × {𝑓}) ∈ {𝑥𝜓} ↔ ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓}))
174170, 173bitr3id 285 . . . . . . . . . . . . . 14 (𝑓 = 𝑖 → (𝜒 ↔ ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓}))
175174cbvralvw 3210 . . . . . . . . . . . . 13 (∀𝑓𝑅 𝜒 ↔ ∀𝑖𝑅 ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
176165, 175sylib 218 . . . . . . . . . . . 12 (𝜑 → ∀𝑖𝑅 ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
177176r19.21bi 3224 . . . . . . . . . . 11 ((𝜑𝑖𝑅) → ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
178162, 177syldan 591 . . . . . . . . . 10 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((𝐵m 𝐼) × {𝑖}) ∈ {𝑥𝜓})
179163, 178eqeltrd 2831 . . . . . . . . 9 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})
180 elpreima 6991 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})))
18116, 180syl 17 . . . . . . . . . 10 (𝜑 → (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})))
182181adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖)) ∈ {𝑥𝜓})))
183154, 179, 182mpbir2and 713 . . . . . . . 8 ((𝜑𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
184183adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ 𝑖 ∈ (Base‘(𝑆s 𝑅))) → ((algSc‘(𝐼 mPoly (𝑆s 𝑅)))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
18526adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝐼) → 𝐼 ∈ V)
18632adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝐼) → (𝑆s 𝑅) ∈ Ring)
187 simpr 484 . . . . . . . . . 10 ((𝜑𝑖𝐼) → 𝑖𝐼)
1887, 22, 12, 185, 186, 187mvrcl 21929 . . . . . . . . 9 ((𝜑𝑖𝐼) → ((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
18927adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝐼) → 𝑆 ∈ CRing)
19028adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝐼) → 𝑅 ∈ (SubRing‘𝑆))
1916, 22, 8, 10, 185, 189, 190, 187evlsvar 22025 . . . . . . . . . 10 ((𝜑𝑖𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)))
192 mpfind.pr . . . . . . . . . . . . . 14 ((𝜑𝑓𝐼) → 𝜃)
193166mptex 7157 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ V
194 mpfind.wb . . . . . . . . . . . . . . 15 (𝑥 = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) → (𝜓𝜃))
195193, 194elab 3630 . . . . . . . . . . . . . 14 ((𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓} ↔ 𝜃)
196192, 195sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑓𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓})
197196ralrimiva 3124 . . . . . . . . . . . 12 (𝜑 → ∀𝑓𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓})
198 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑓 = 𝑖 → (𝑔𝑓) = (𝑔𝑖))
199198mpteq2dv 5183 . . . . . . . . . . . . . 14 (𝑓 = 𝑖 → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)))
200199eleq1d 2816 . . . . . . . . . . . . 13 (𝑓 = 𝑖 → ((𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓} ↔ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓}))
201200cbvralvw 3210 . . . . . . . . . . . 12 (∀𝑓𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑓)) ∈ {𝑥𝜓} ↔ ∀𝑖𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓})
202197, 201sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑖𝐼 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓})
203202r19.21bi 3224 . . . . . . . . . 10 ((𝜑𝑖𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑖)) ∈ {𝑥𝜓})
204191, 203eqeltrd 2831 . . . . . . . . 9 ((𝜑𝑖𝐼) → (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})
205 elpreima 6991 . . . . . . . . . . 11 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})))
20616, 205syl 17 . . . . . . . . . 10 (𝜑 → (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})))
207206adantr 480 . . . . . . . . 9 ((𝜑𝑖𝐼) → (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}) ↔ (((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∧ (((𝐼 evalSub 𝑆)‘𝑅)‘((𝐼 mVar (𝑆s 𝑅))‘𝑖)) ∈ {𝑥𝜓})))
208188, 204, 207mpbir2and 713 . . . . . . . 8 ((𝜑𝑖𝐼) → ((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
209208adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∧ 𝑖𝐼) → ((𝐼 mVar (𝑆s 𝑅))‘𝑖) ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
210 simpr 484 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → 𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅))))
21126adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → 𝐼 ∈ V)
21230adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (𝑆s 𝑅) ∈ CRing)
21321, 22, 7, 23, 24, 25, 12, 109, 141, 184, 209, 210, 211, 212mplind 22005 . . . . . 6 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → 𝑦 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓}))
214 fvimacnvi 6985 . . . . . 6 ((Fun ((𝐼 evalSub 𝑆)‘𝑅) ∧ 𝑦 ∈ (((𝐼 evalSub 𝑆)‘𝑅) “ {𝑥𝜓})) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥𝜓})
21520, 213, 214syl2an2r 685 . . . . 5 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥𝜓})
216 eleq1 2819 . . . . 5 ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴 → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) ∈ {𝑥𝜓} ↔ 𝐴 ∈ {𝑥𝜓}))
217215, 216syl5ibcom 245 . . . 4 ((𝜑𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) → ((((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴𝐴 ∈ {𝑥𝜓}))
218217rexlimdva 3133 . . 3 (𝜑 → (∃𝑦 ∈ (Base‘(𝐼 mPoly (𝑆s 𝑅)))(((𝐼 evalSub 𝑆)‘𝑅)‘𝑦) = 𝐴𝐴 ∈ {𝑥𝜓}))
21919, 218mpd 15 . 2 (𝜑𝐴 ∈ {𝑥𝜓})
220 mpfind.wg . . . 4 (𝑥 = 𝐴 → (𝜓𝜌))
221220elabg 3627 . . 3 (𝐴𝑄 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
2221, 221syl 17 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
223219, 222mpbid 232 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436  wss 3897  {csn 4573  cmpt 5170   × cxp 5612  ccnv 5613  ran crn 5615  cima 5617  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164  s cpws 17350   MndHom cmhm 18689   GrpHom cghm 19124  mulGrpcmgp 20058  Ringcrg 20151  CRingccrg 20152   RingHom crh 20387  SubRingcsubrg 20484  AssAlgcasa 21787  algSccascl 21789   mVar cmvr 21842   mPoly cmpl 21843   evalSub ces 22007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-evls 22009
This theorem is referenced by:  pf1ind  22270  mzpmfp  42839
  Copyright terms: Public domain W3C validator