Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . 3
⊢ (𝑎 = 𝑏 → (𝐹‘𝑎) = (𝐹‘𝑏)) |
2 | | fveq2 6756 |
. . 3
⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) |
3 | | fveq2 6756 |
. . 3
⊢ (𝑎 = 𝐵 → (𝐹‘𝑎) = (𝐹‘𝐵)) |
4 | | zssre 12256 |
. . 3
⊢ ℤ
⊆ ℝ |
5 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = 𝑎 → (𝑥 ∈ ℤ ↔ 𝑎 ∈ ℤ)) |
6 | 5 | anbi2d 628 |
. . . . 5
⊢ (𝑥 = 𝑎 → ((𝜑 ∧ 𝑥 ∈ ℤ) ↔ (𝜑 ∧ 𝑎 ∈ ℤ))) |
7 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) |
8 | 7 | eleq1d 2823 |
. . . . 5
⊢ (𝑥 = 𝑎 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑎) ∈ ℝ)) |
9 | 6, 8 | imbi12d 344 |
. . . 4
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘𝑥) ∈ ℝ) ↔ ((𝜑 ∧ 𝑎 ∈ ℤ) → (𝐹‘𝑎) ∈ ℝ))) |
10 | | monotoddzzfi.1 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘𝑥) ∈ ℝ) |
11 | 9, 10 | chvarvv 2003 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ ℤ) → (𝐹‘𝑎) ∈ ℝ) |
12 | | elznn 12265 |
. . . . . . 7
⊢ (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ ∨ -𝑎 ∈
ℕ0))) |
13 | 12 | simprbi 496 |
. . . . . 6
⊢ (𝑎 ∈ ℤ → (𝑎 ∈ ℕ ∨ -𝑎 ∈
ℕ0)) |
14 | | elznn 12265 |
. . . . . . 7
⊢ (𝑏 ∈ ℤ ↔ (𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ ∨ -𝑏 ∈
ℕ0))) |
15 | 14 | simprbi 496 |
. . . . . 6
⊢ (𝑏 ∈ ℤ → (𝑏 ∈ ℕ ∨ -𝑏 ∈
ℕ0)) |
16 | 13, 15 | anim12i 612 |
. . . . 5
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ0)
∧ (𝑏 ∈ ℕ
∨ -𝑏 ∈
ℕ0))) |
17 | 16 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ0) ∧ (𝑏 ∈ ℕ ∨ -𝑏 ∈
ℕ0))) |
18 | | simpll 763 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → 𝜑) |
19 | | nnnn0 12170 |
. . . . . . . 8
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℕ0) |
20 | 19 | ad2antrl 724 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → 𝑎 ∈ ℕ0) |
21 | | nnnn0 12170 |
. . . . . . . 8
⊢ (𝑏 ∈ ℕ → 𝑏 ∈
ℕ0) |
22 | 21 | ad2antll 725 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → 𝑏 ∈ ℕ0) |
23 | | vex 3426 |
. . . . . . . 8
⊢ 𝑎 ∈ V |
24 | | vex 3426 |
. . . . . . . 8
⊢ 𝑏 ∈ V |
25 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑥 = 𝑎) |
26 | 25 | eleq1d 2823 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑥 ∈ ℕ0 ↔ 𝑎 ∈
ℕ0)) |
27 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑦 = 𝑏) |
28 | 27 | eleq1d 2823 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑦 ∈ ℕ0 ↔ 𝑏 ∈
ℕ0)) |
29 | 26, 28 | 3anbi23d 1437 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0)
↔ (𝜑 ∧ 𝑎 ∈ ℕ0
∧ 𝑏 ∈
ℕ0))) |
30 | | breq12 5075 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑥 < 𝑦 ↔ 𝑎 < 𝑏)) |
31 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → (𝐹‘𝑦) = (𝐹‘𝑏)) |
32 | 7, 31 | breqan12d 5086 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ((𝐹‘𝑥) < (𝐹‘𝑦) ↔ (𝐹‘𝑎) < (𝐹‘𝑏))) |
33 | 30, 32 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ((𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦)) ↔ (𝑎 < 𝑏 → (𝐹‘𝑎) < (𝐹‘𝑏)))) |
34 | 29, 33 | imbi12d 344 |
. . . . . . . 8
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0)
→ (𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) ↔ ((𝜑 ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)
→ (𝑎 < 𝑏 → (𝐹‘𝑎) < (𝐹‘𝑏))))) |
35 | | monotoddzzfi.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0)
→ (𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) |
36 | 23, 24, 34, 35 | vtocl2 3490 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0)
→ (𝑎 < 𝑏 → (𝐹‘𝑎) < (𝐹‘𝑏))) |
37 | 18, 20, 22, 36 | syl3anc 1369 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑎 < 𝑏 → (𝐹‘𝑎) < (𝐹‘𝑏))) |
38 | 37 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝑎 < 𝑏 → (𝐹‘𝑎) < (𝐹‘𝑏)))) |
39 | 11 | adantrr 713 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐹‘𝑎) ∈ ℝ) |
40 | 39 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → (𝐹‘𝑎) ∈ ℝ) |
41 | | 0red 10909 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → 0
∈ ℝ) |
42 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑏 → (𝑥 ∈ ℤ ↔ 𝑏 ∈ ℤ)) |
43 | 42 | anbi2d 628 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑏 → ((𝜑 ∧ 𝑥 ∈ ℤ) ↔ (𝜑 ∧ 𝑏 ∈ ℤ))) |
44 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑏 → (𝐹‘𝑥) = (𝐹‘𝑏)) |
45 | 44 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑏 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑏) ∈ ℝ)) |
46 | 43, 45 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑏 → (((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘𝑥) ∈ ℝ) ↔ ((𝜑 ∧ 𝑏 ∈ ℤ) → (𝐹‘𝑏) ∈ ℝ))) |
47 | 46, 10 | chvarvv 2003 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ ℤ) → (𝐹‘𝑏) ∈ ℝ) |
48 | 47 | adantrl 712 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐹‘𝑏) ∈ ℝ) |
49 | 48 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → (𝐹‘𝑏) ∈ ℝ) |
50 | | 0red 10909 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → 0 ∈
ℝ) |
51 | | znegcl 12285 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ℤ → -𝑎 ∈
ℤ) |
52 | 51 | ad2antrl 724 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → -𝑎 ∈ ℤ) |
53 | | negex 11149 |
. . . . . . . . . . . . . . 15
⊢ -𝑎 ∈ V |
54 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = -𝑎 → (𝑥 ∈ ℤ ↔ -𝑎 ∈ ℤ)) |
55 | 54 | anbi2d 628 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = -𝑎 → ((𝜑 ∧ 𝑥 ∈ ℤ) ↔ (𝜑 ∧ -𝑎 ∈ ℤ))) |
56 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = -𝑎 → (𝐹‘𝑥) = (𝐹‘-𝑎)) |
57 | 56 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = -𝑎 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘-𝑎) ∈ ℝ)) |
58 | 55, 57 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = -𝑎 → (((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘𝑥) ∈ ℝ) ↔ ((𝜑 ∧ -𝑎 ∈ ℤ) → (𝐹‘-𝑎) ∈ ℝ))) |
59 | 53, 58, 10 | vtocl 3488 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ -𝑎 ∈ ℤ) → (𝐹‘-𝑎) ∈ ℝ) |
60 | 52, 59 | syldan 590 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐹‘-𝑎) ∈ ℝ) |
61 | 60 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → (𝐹‘-𝑎) ∈ ℝ) |
62 | | 0z 12260 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℤ |
63 | | c0ex 10900 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
V |
64 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 0 → (𝑥 ∈ ℤ ↔ 0 ∈
ℤ)) |
65 | 64 | anbi2d 628 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 0 → ((𝜑 ∧ 𝑥 ∈ ℤ) ↔ (𝜑 ∧ 0 ∈ ℤ))) |
66 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 0 → (𝐹‘𝑥) = (𝐹‘0)) |
67 | 66 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 0 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘0) ∈ ℝ)) |
68 | 65, 67 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 0 → (((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘𝑥) ∈ ℝ) ↔ ((𝜑 ∧ 0 ∈ ℤ) → (𝐹‘0) ∈
ℝ))) |
69 | 63, 68, 10 | vtocl 3488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 0 ∈ ℤ) →
(𝐹‘0) ∈
ℝ) |
70 | 62, 69 | mpan2 687 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹‘0) ∈ ℝ) |
71 | 70 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹‘0) ∈ ℂ) |
72 | | neg0 11197 |
. . . . . . . . . . . . . . . . . 18
⊢ -0 =
0 |
73 | 72 | fveq2i 6759 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹‘-0) = (𝐹‘0) |
74 | | negeq 11143 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 0 → -𝑥 = -0) |
75 | 74 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 0 → (𝐹‘-𝑥) = (𝐹‘-0)) |
76 | 66 | negeqd 11145 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 0 → -(𝐹‘𝑥) = -(𝐹‘0)) |
77 | 75, 76 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 0 → ((𝐹‘-𝑥) = -(𝐹‘𝑥) ↔ (𝐹‘-0) = -(𝐹‘0))) |
78 | 65, 77 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 0 → (((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘-𝑥) = -(𝐹‘𝑥)) ↔ ((𝜑 ∧ 0 ∈ ℤ) → (𝐹‘-0) = -(𝐹‘0)))) |
79 | | monotoddzzfi.2 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘-𝑥) = -(𝐹‘𝑥)) |
80 | 63, 78, 79 | vtocl 3488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 0 ∈ ℤ) →
(𝐹‘-0) = -(𝐹‘0)) |
81 | 62, 80 | mpan2 687 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹‘-0) = -(𝐹‘0)) |
82 | 73, 81 | eqtr3id 2793 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹‘0) = -(𝐹‘0)) |
83 | 71, 82 | eqnegad 11627 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹‘0) = 0) |
84 | 83 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐹‘0) = 0) |
85 | 84 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → (𝐹‘0) = 0) |
86 | | nngt0 11934 |
. . . . . . . . . . . . . . 15
⊢ (-𝑎 ∈ ℕ → 0 <
-𝑎) |
87 | 86 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → 0 <
-𝑎) |
88 | | simplll 771 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → 𝜑) |
89 | | 0nn0 12178 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℕ0 |
90 | 89 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → 0 ∈
ℕ0) |
91 | | simplrl 773 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → -𝑎 ∈
ℕ0) |
92 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 = 0 ∧ 𝑦 = -𝑎) → 𝑥 = 0) |
93 | 92 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 0 ∧ 𝑦 = -𝑎) → (𝑥 ∈ ℕ0 ↔ 0 ∈
ℕ0)) |
94 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 = 0 ∧ 𝑦 = -𝑎) → 𝑦 = -𝑎) |
95 | 94 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 0 ∧ 𝑦 = -𝑎) → (𝑦 ∈ ℕ0 ↔ -𝑎 ∈
ℕ0)) |
96 | 93, 95 | 3anbi23d 1437 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 0 ∧ 𝑦 = -𝑎) → ((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0)
↔ (𝜑 ∧ 0 ∈
ℕ0 ∧ -𝑎 ∈
ℕ0))) |
97 | | breq12 5075 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 0 ∧ 𝑦 = -𝑎) → (𝑥 < 𝑦 ↔ 0 < -𝑎)) |
98 | 92 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 = 0 ∧ 𝑦 = -𝑎) → (𝐹‘𝑥) = (𝐹‘0)) |
99 | 94 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 = 0 ∧ 𝑦 = -𝑎) → (𝐹‘𝑦) = (𝐹‘-𝑎)) |
100 | 98, 99 | breq12d 5083 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 0 ∧ 𝑦 = -𝑎) → ((𝐹‘𝑥) < (𝐹‘𝑦) ↔ (𝐹‘0) < (𝐹‘-𝑎))) |
101 | 97, 100 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 0 ∧ 𝑦 = -𝑎) → ((𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦)) ↔ (0 < -𝑎 → (𝐹‘0) < (𝐹‘-𝑎)))) |
102 | 96, 101 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 0 ∧ 𝑦 = -𝑎) → (((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0)
→ (𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) ↔ ((𝜑 ∧ 0 ∈ ℕ0 ∧
-𝑎 ∈
ℕ0) → (0 < -𝑎 → (𝐹‘0) < (𝐹‘-𝑎))))) |
103 | 63, 53, 102, 35 | vtocl2 3490 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 0 ∈
ℕ0 ∧ -𝑎 ∈ ℕ0) → (0 <
-𝑎 → (𝐹‘0) < (𝐹‘-𝑎))) |
104 | 88, 90, 91, 103 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → (0 <
-𝑎 → (𝐹‘0) < (𝐹‘-𝑎))) |
105 | 87, 104 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → (𝐹‘0) < (𝐹‘-𝑎)) |
106 | 85, 105 | eqbrtrrd 5094 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → 0 <
(𝐹‘-𝑎)) |
107 | 50, 61, 106 | ltled 11053 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → 0 ≤
(𝐹‘-𝑎)) |
108 | | 0le0 12004 |
. . . . . . . . . . . . 13
⊢ 0 ≤
0 |
109 | 84 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 = 0) → (𝐹‘0) = 0) |
110 | 108, 109 | breqtrrid 5108 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 = 0) → 0 ≤ (𝐹‘0)) |
111 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (-𝑎 = 0 → (𝐹‘-𝑎) = (𝐹‘0)) |
112 | 111 | breq2d 5082 |
. . . . . . . . . . . . 13
⊢ (-𝑎 = 0 → (0 ≤ (𝐹‘-𝑎) ↔ 0 ≤ (𝐹‘0))) |
113 | 112 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 = 0) → (0 ≤ (𝐹‘-𝑎) ↔ 0 ≤ (𝐹‘0))) |
114 | 110, 113 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) ∧ -𝑎 = 0) → 0 ≤ (𝐹‘-𝑎)) |
115 | | elnn0 12165 |
. . . . . . . . . . . . 13
⊢ (-𝑎 ∈ ℕ0
↔ (-𝑎 ∈ ℕ
∨ -𝑎 =
0)) |
116 | 115 | biimpi 215 |
. . . . . . . . . . . 12
⊢ (-𝑎 ∈ ℕ0
→ (-𝑎 ∈ ℕ
∨ -𝑎 =
0)) |
117 | 116 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → (-𝑎 ∈ ℕ ∨ -𝑎 = 0)) |
118 | 107, 114,
117 | mpjaodan 955 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → 0 ≤
(𝐹‘-𝑎)) |
119 | | negeq 11143 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → -𝑥 = -𝑎) |
120 | 119 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → (𝐹‘-𝑥) = (𝐹‘-𝑎)) |
121 | 7 | negeqd 11145 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → -(𝐹‘𝑥) = -(𝐹‘𝑎)) |
122 | 120, 121 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → ((𝐹‘-𝑥) = -(𝐹‘𝑥) ↔ (𝐹‘-𝑎) = -(𝐹‘𝑎))) |
123 | 6, 122 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘-𝑥) = -(𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑎 ∈ ℤ) → (𝐹‘-𝑎) = -(𝐹‘𝑎)))) |
124 | 123, 79 | chvarvv 2003 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ ℤ) → (𝐹‘-𝑎) = -(𝐹‘𝑎)) |
125 | 124 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐹‘-𝑎) = -(𝐹‘𝑎)) |
126 | 125 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → (𝐹‘-𝑎) = -(𝐹‘𝑎)) |
127 | 118, 126 | breqtrd 5096 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → 0 ≤
-(𝐹‘𝑎)) |
128 | 40 | le0neg1d 11476 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → ((𝐹‘𝑎) ≤ 0 ↔ 0 ≤ -(𝐹‘𝑎))) |
129 | 127, 128 | mpbird 256 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → (𝐹‘𝑎) ≤ 0) |
130 | 84 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → (𝐹‘0) = 0) |
131 | | nngt0 11934 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ℕ → 0 <
𝑏) |
132 | 131 | ad2antll 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → 0 <
𝑏) |
133 | | simpll 763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → 𝜑) |
134 | 89 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → 0
∈ ℕ0) |
135 | 21 | ad2antll 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → 𝑏 ∈
ℕ0) |
136 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑏) → 𝑥 = 0) |
137 | 136 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑏) → (𝑥 ∈ ℕ0 ↔ 0 ∈
ℕ0)) |
138 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑏) → 𝑦 = 𝑏) |
139 | 138 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑏) → (𝑦 ∈ ℕ0 ↔ 𝑏 ∈
ℕ0)) |
140 | 137, 139 | 3anbi23d 1437 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑏) → ((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0)
↔ (𝜑 ∧ 0 ∈
ℕ0 ∧ 𝑏
∈ ℕ0))) |
141 | | breq12 5075 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑏) → (𝑥 < 𝑦 ↔ 0 < 𝑏)) |
142 | 66, 31 | breqan12d 5086 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑏) → ((𝐹‘𝑥) < (𝐹‘𝑦) ↔ (𝐹‘0) < (𝐹‘𝑏))) |
143 | 141, 142 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑏) → ((𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦)) ↔ (0 < 𝑏 → (𝐹‘0) < (𝐹‘𝑏)))) |
144 | 140, 143 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑏) → (((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0)
→ (𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) ↔ ((𝜑 ∧ 0 ∈ ℕ0 ∧
𝑏 ∈
ℕ0) → (0 < 𝑏 → (𝐹‘0) < (𝐹‘𝑏))))) |
145 | 63, 24, 144, 35 | vtocl2 3490 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 0 ∈
ℕ0 ∧ 𝑏
∈ ℕ0) → (0 < 𝑏 → (𝐹‘0) < (𝐹‘𝑏))) |
146 | 133, 134,
135, 145 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → (0 <
𝑏 → (𝐹‘0) < (𝐹‘𝑏))) |
147 | 132, 146 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → (𝐹‘0) < (𝐹‘𝑏)) |
148 | 130, 147 | eqbrtrrd 5094 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → 0 <
(𝐹‘𝑏)) |
149 | 40, 41, 49, 129, 148 | lelttrd 11063 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → (𝐹‘𝑎) < (𝐹‘𝑏)) |
150 | 149 | a1d 25 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ)) → (𝑎 < 𝑏 → (𝐹‘𝑎) < (𝐹‘𝑏))) |
151 | 150 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((-𝑎 ∈ ℕ0
∧ 𝑏 ∈ ℕ)
→ (𝑎 < 𝑏 → (𝐹‘𝑎) < (𝐹‘𝑏)))) |
152 | | simp3 1136 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏) |
153 | | zre 12253 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ ℤ → 𝑏 ∈
ℝ) |
154 | 153 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈
ℝ) |
155 | 154 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 𝑏 ∈
ℝ) |
156 | | 1red 10907 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 1 ∈
ℝ) |
157 | | nnre 11910 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℝ) |
158 | 157 | ad2antrl 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 𝑎 ∈
ℝ) |
159 | | 0red 10909 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 0 ∈
ℝ) |
160 | | nn0ge0 12188 |
. . . . . . . . . . . . 13
⊢ (-𝑏 ∈ ℕ0
→ 0 ≤ -𝑏) |
161 | 160 | ad2antll 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 0 ≤
-𝑏) |
162 | 155 | le0neg1d 11476 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → (𝑏 ≤ 0 ↔ 0 ≤ -𝑏)) |
163 | 161, 162 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 𝑏 ≤ 0) |
164 | | 0le1 11428 |
. . . . . . . . . . . 12
⊢ 0 ≤
1 |
165 | 164 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 0 ≤
1) |
166 | 155, 159,
156, 163, 165 | letrd 11062 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 𝑏 ≤ 1) |
167 | | nnge1 11931 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ → 1 ≤
𝑎) |
168 | 167 | ad2antrl 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 1 ≤
𝑎) |
169 | 155, 156,
158, 166, 168 | letrd 11062 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 𝑏 ≤ 𝑎) |
170 | 155, 158 | lenltd 11051 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → (𝑏 ≤ 𝑎 ↔ ¬ 𝑎 < 𝑏)) |
171 | 169, 170 | mpbid 231 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → ¬
𝑎 < 𝑏) |
172 | 171 | 3adant3 1130 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0) ∧ 𝑎 < 𝑏) → ¬ 𝑎 < 𝑏) |
173 | 152, 172 | pm2.21dd 194 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0) ∧ 𝑎 < 𝑏) → (𝐹‘𝑎) < (𝐹‘𝑏)) |
174 | 173 | 3exp 1117 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0) → (𝑎 < 𝑏 → (𝐹‘𝑎) < (𝐹‘𝑏)))) |
175 | | negex 11149 |
. . . . . . . . . . . 12
⊢ -𝑏 ∈ V |
176 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = -𝑏 ∧ 𝑦 = -𝑎) → 𝑥 = -𝑏) |
177 | 176 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = -𝑏 ∧ 𝑦 = -𝑎) → (𝑥 ∈ ℕ0 ↔ -𝑏 ∈
ℕ0)) |
178 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = -𝑏 ∧ 𝑦 = -𝑎) → 𝑦 = -𝑎) |
179 | 178 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = -𝑏 ∧ 𝑦 = -𝑎) → (𝑦 ∈ ℕ0 ↔ -𝑎 ∈
ℕ0)) |
180 | 177, 179 | 3anbi23d 1437 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = -𝑏 ∧ 𝑦 = -𝑎) → ((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0)
↔ (𝜑 ∧ -𝑏 ∈ ℕ0
∧ -𝑎 ∈
ℕ0))) |
181 | | breq12 5075 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = -𝑏 ∧ 𝑦 = -𝑎) → (𝑥 < 𝑦 ↔ -𝑏 < -𝑎)) |
182 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = -𝑏 → (𝐹‘𝑥) = (𝐹‘-𝑏)) |
183 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = -𝑎 → (𝐹‘𝑦) = (𝐹‘-𝑎)) |
184 | 182, 183 | breqan12d 5086 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = -𝑏 ∧ 𝑦 = -𝑎) → ((𝐹‘𝑥) < (𝐹‘𝑦) ↔ (𝐹‘-𝑏) < (𝐹‘-𝑎))) |
185 | 181, 184 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = -𝑏 ∧ 𝑦 = -𝑎) → ((𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦)) ↔ (-𝑏 < -𝑎 → (𝐹‘-𝑏) < (𝐹‘-𝑎)))) |
186 | 180, 185 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ ((𝑥 = -𝑏 ∧ 𝑦 = -𝑎) → (((𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0)
→ (𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) ↔ ((𝜑 ∧ -𝑏 ∈ ℕ0 ∧ -𝑎 ∈ ℕ0)
→ (-𝑏 < -𝑎 → (𝐹‘-𝑏) < (𝐹‘-𝑎))))) |
187 | 175, 53, 186, 35 | vtocl2 3490 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ -𝑏 ∈ ℕ0 ∧ -𝑎 ∈ ℕ0)
→ (-𝑏 < -𝑎 → (𝐹‘-𝑏) < (𝐹‘-𝑎))) |
188 | 187 | 3com23 1124 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ -𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)
→ (-𝑏 < -𝑎 → (𝐹‘-𝑏) < (𝐹‘-𝑎))) |
189 | 188 | 3expb 1118 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0))
→ (-𝑏 < -𝑎 → (𝐹‘-𝑏) < (𝐹‘-𝑎))) |
190 | 189 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0))
→ (-𝑏 < -𝑎 → (𝐹‘-𝑏) < (𝐹‘-𝑎))) |
191 | | negeq 11143 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑏 → -𝑥 = -𝑏) |
192 | 191 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑏 → (𝐹‘-𝑥) = (𝐹‘-𝑏)) |
193 | 44 | negeqd 11145 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑏 → -(𝐹‘𝑥) = -(𝐹‘𝑏)) |
194 | 192, 193 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑏 → ((𝐹‘-𝑥) = -(𝐹‘𝑥) ↔ (𝐹‘-𝑏) = -(𝐹‘𝑏))) |
195 | 43, 194 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑏 → (((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐹‘-𝑥) = -(𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑏 ∈ ℤ) → (𝐹‘-𝑏) = -(𝐹‘𝑏)))) |
196 | 195, 79 | chvarvv 2003 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ ℤ) → (𝐹‘-𝑏) = -(𝐹‘𝑏)) |
197 | 196 | adantrl 712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐹‘-𝑏) = -(𝐹‘𝑏)) |
198 | 197 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0))
→ (𝐹‘-𝑏) = -(𝐹‘𝑏)) |
199 | 125 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0))
→ (𝐹‘-𝑎) = -(𝐹‘𝑎)) |
200 | 198, 199 | breq12d 5083 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0))
→ ((𝐹‘-𝑏) < (𝐹‘-𝑎) ↔ -(𝐹‘𝑏) < -(𝐹‘𝑎))) |
201 | 190, 200 | sylibd 238 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0))
→ (-𝑏 < -𝑎 → -(𝐹‘𝑏) < -(𝐹‘𝑎))) |
202 | | zre 12253 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℝ) |
203 | 202 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℝ) |
204 | 203 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0))
→ 𝑎 ∈
ℝ) |
205 | 154 | ad2antlr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0))
→ 𝑏 ∈
ℝ) |
206 | 204, 205 | ltnegd 11483 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0))
→ (𝑎 < 𝑏 ↔ -𝑏 < -𝑎)) |
207 | 39 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0))
→ (𝐹‘𝑎) ∈
ℝ) |
208 | 48 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0))
→ (𝐹‘𝑏) ∈
ℝ) |
209 | 207, 208 | ltnegd 11483 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0))
→ ((𝐹‘𝑎) < (𝐹‘𝑏) ↔ -(𝐹‘𝑏) < -(𝐹‘𝑎))) |
210 | 201, 206,
209 | 3imtr4d 293 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0))
→ (𝑎 < 𝑏 → (𝐹‘𝑎) < (𝐹‘𝑏))) |
211 | 210 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((-𝑎 ∈ ℕ0
∧ -𝑏 ∈
ℕ0) → (𝑎 < 𝑏 → (𝐹‘𝑎) < (𝐹‘𝑏)))) |
212 | 38, 151, 174, 211 | ccased 1035 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ0)
∧ (𝑏 ∈ ℕ
∨ -𝑏 ∈
ℕ0)) → (𝑎 < 𝑏 → (𝐹‘𝑎) < (𝐹‘𝑏)))) |
213 | 17, 212 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 < 𝑏 → (𝐹‘𝑎) < (𝐹‘𝑏))) |
214 | 1, 2, 3, 4, 11, 213 | ltord1 11431 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝐴 < 𝐵 ↔ (𝐹‘𝐴) < (𝐹‘𝐵))) |
215 | 214 | 3impb 1113 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐹‘𝐴) < (𝐹‘𝐵))) |