Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monotoddzzfi Structured version   Visualization version   GIF version

Theorem monotoddzzfi 42954
Description: A function which is odd and monotonic on 0 is monotonic on . This proof is far too long. (Contributed by Stefan O'Rear, 25-Sep-2014.)
Hypotheses
Ref Expression
monotoddzzfi.1 ((𝜑𝑥 ∈ ℤ) → (𝐹𝑥) ∈ ℝ)
monotoddzzfi.2 ((𝜑𝑥 ∈ ℤ) → (𝐹‘-𝑥) = -(𝐹𝑥))
monotoddzzfi.3 ((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
Assertion
Ref Expression
monotoddzzfi ((𝜑𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐹𝐴) < (𝐹𝐵)))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem monotoddzzfi
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . 3 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
2 fveq2 6906 . . 3 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
3 fveq2 6906 . . 3 (𝑎 = 𝐵 → (𝐹𝑎) = (𝐹𝐵))
4 zssre 12620 . . 3 ℤ ⊆ ℝ
5 eleq1 2829 . . . . . 6 (𝑥 = 𝑎 → (𝑥 ∈ ℤ ↔ 𝑎 ∈ ℤ))
65anbi2d 630 . . . . 5 (𝑥 = 𝑎 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑𝑎 ∈ ℤ)))
7 fveq2 6906 . . . . . 6 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
87eleq1d 2826 . . . . 5 (𝑥 = 𝑎 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑎) ∈ ℝ))
96, 8imbi12d 344 . . . 4 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℤ) → (𝐹𝑥) ∈ ℝ) ↔ ((𝜑𝑎 ∈ ℤ) → (𝐹𝑎) ∈ ℝ)))
10 monotoddzzfi.1 . . . 4 ((𝜑𝑥 ∈ ℤ) → (𝐹𝑥) ∈ ℝ)
119, 10chvarvv 1998 . . 3 ((𝜑𝑎 ∈ ℤ) → (𝐹𝑎) ∈ ℝ)
12 elznn 12629 . . . . . . 7 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ0)))
1312simprbi 496 . . . . . 6 (𝑎 ∈ ℤ → (𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ0))
14 elznn 12629 . . . . . . 7 (𝑏 ∈ ℤ ↔ (𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ ∨ -𝑏 ∈ ℕ0)))
1514simprbi 496 . . . . . 6 (𝑏 ∈ ℤ → (𝑏 ∈ ℕ ∨ -𝑏 ∈ ℕ0))
1613, 15anim12i 613 . . . . 5 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ0) ∧ (𝑏 ∈ ℕ ∨ -𝑏 ∈ ℕ0)))
1716adantl 481 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ0) ∧ (𝑏 ∈ ℕ ∨ -𝑏 ∈ ℕ0)))
18 simpll 767 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → 𝜑)
19 nnnn0 12533 . . . . . . . 8 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0)
2019ad2antrl 728 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → 𝑎 ∈ ℕ0)
21 nnnn0 12533 . . . . . . . 8 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
2221ad2antll 729 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → 𝑏 ∈ ℕ0)
23 vex 3484 . . . . . . . 8 𝑎 ∈ V
24 vex 3484 . . . . . . . 8 𝑏 ∈ V
25 simpl 482 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑥 = 𝑎)
2625eleq1d 2826 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥 ∈ ℕ0𝑎 ∈ ℕ0))
27 simpr 484 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑦 = 𝑏)
2827eleq1d 2826 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑦 ∈ ℕ0𝑏 ∈ ℕ0))
2926, 283anbi23d 1441 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → ((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ↔ (𝜑𝑎 ∈ ℕ0𝑏 ∈ ℕ0)))
30 breq12 5148 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥 < 𝑦𝑎 < 𝑏))
31 fveq2 6906 . . . . . . . . . . 11 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
327, 31breqan12d 5159 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → ((𝐹𝑥) < (𝐹𝑦) ↔ (𝐹𝑎) < (𝐹𝑏)))
3330, 32imbi12d 344 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → ((𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ (𝑎 < 𝑏 → (𝐹𝑎) < (𝐹𝑏))))
3429, 33imbi12d 344 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑏) → (((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦))) ↔ ((𝜑𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑎 < 𝑏 → (𝐹𝑎) < (𝐹𝑏)))))
35 monotoddzzfi.3 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
3623, 24, 34, 35vtocl2 3566 . . . . . . 7 ((𝜑𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑎 < 𝑏 → (𝐹𝑎) < (𝐹𝑏)))
3718, 20, 22, 36syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (𝑎 < 𝑏 → (𝐹𝑎) < (𝐹𝑏)))
3837ex 412 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝑎 < 𝑏 → (𝐹𝑎) < (𝐹𝑏))))
3911adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐹𝑎) ∈ ℝ)
4039adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → (𝐹𝑎) ∈ ℝ)
41 0red 11264 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → 0 ∈ ℝ)
42 eleq1 2829 . . . . . . . . . . . . 13 (𝑥 = 𝑏 → (𝑥 ∈ ℤ ↔ 𝑏 ∈ ℤ))
4342anbi2d 630 . . . . . . . . . . . 12 (𝑥 = 𝑏 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑𝑏 ∈ ℤ)))
44 fveq2 6906 . . . . . . . . . . . . 13 (𝑥 = 𝑏 → (𝐹𝑥) = (𝐹𝑏))
4544eleq1d 2826 . . . . . . . . . . . 12 (𝑥 = 𝑏 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑏) ∈ ℝ))
4643, 45imbi12d 344 . . . . . . . . . . 11 (𝑥 = 𝑏 → (((𝜑𝑥 ∈ ℤ) → (𝐹𝑥) ∈ ℝ) ↔ ((𝜑𝑏 ∈ ℤ) → (𝐹𝑏) ∈ ℝ)))
4746, 10chvarvv 1998 . . . . . . . . . 10 ((𝜑𝑏 ∈ ℤ) → (𝐹𝑏) ∈ ℝ)
4847adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐹𝑏) ∈ ℝ)
4948adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → (𝐹𝑏) ∈ ℝ)
50 0red 11264 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → 0 ∈ ℝ)
51 znegcl 12652 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℤ → -𝑎 ∈ ℤ)
5251ad2antrl 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → -𝑎 ∈ ℤ)
53 negex 11506 . . . . . . . . . . . . . . 15 -𝑎 ∈ V
54 eleq1 2829 . . . . . . . . . . . . . . . . 17 (𝑥 = -𝑎 → (𝑥 ∈ ℤ ↔ -𝑎 ∈ ℤ))
5554anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑥 = -𝑎 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑 ∧ -𝑎 ∈ ℤ)))
56 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑥 = -𝑎 → (𝐹𝑥) = (𝐹‘-𝑎))
5756eleq1d 2826 . . . . . . . . . . . . . . . 16 (𝑥 = -𝑎 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹‘-𝑎) ∈ ℝ))
5855, 57imbi12d 344 . . . . . . . . . . . . . . 15 (𝑥 = -𝑎 → (((𝜑𝑥 ∈ ℤ) → (𝐹𝑥) ∈ ℝ) ↔ ((𝜑 ∧ -𝑎 ∈ ℤ) → (𝐹‘-𝑎) ∈ ℝ)))
5953, 58, 10vtocl 3558 . . . . . . . . . . . . . 14 ((𝜑 ∧ -𝑎 ∈ ℤ) → (𝐹‘-𝑎) ∈ ℝ)
6052, 59syldan 591 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐹‘-𝑎) ∈ ℝ)
6160ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → (𝐹‘-𝑎) ∈ ℝ)
62 0z 12624 . . . . . . . . . . . . . . . . . 18 0 ∈ ℤ
63 c0ex 11255 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
64 eleq1 2829 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝑥 ∈ ℤ ↔ 0 ∈ ℤ))
6564anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → ((𝜑𝑥 ∈ ℤ) ↔ (𝜑 ∧ 0 ∈ ℤ)))
66 fveq2 6906 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝐹𝑥) = (𝐹‘0))
6766eleq1d 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹‘0) ∈ ℝ))
6865, 67imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (((𝜑𝑥 ∈ ℤ) → (𝐹𝑥) ∈ ℝ) ↔ ((𝜑 ∧ 0 ∈ ℤ) → (𝐹‘0) ∈ ℝ)))
6963, 68, 10vtocl 3558 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 ∈ ℤ) → (𝐹‘0) ∈ ℝ)
7062, 69mpan2 691 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹‘0) ∈ ℝ)
7170recnd 11289 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹‘0) ∈ ℂ)
72 neg0 11555 . . . . . . . . . . . . . . . . . 18 -0 = 0
7372fveq2i 6909 . . . . . . . . . . . . . . . . 17 (𝐹‘-0) = (𝐹‘0)
74 negeq 11500 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 0 → -𝑥 = -0)
7574fveq2d 6910 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝐹‘-𝑥) = (𝐹‘-0))
7666negeqd 11502 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → -(𝐹𝑥) = -(𝐹‘0))
7775, 76eqeq12d 2753 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → ((𝐹‘-𝑥) = -(𝐹𝑥) ↔ (𝐹‘-0) = -(𝐹‘0)))
7865, 77imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (((𝜑𝑥 ∈ ℤ) → (𝐹‘-𝑥) = -(𝐹𝑥)) ↔ ((𝜑 ∧ 0 ∈ ℤ) → (𝐹‘-0) = -(𝐹‘0))))
79 monotoddzzfi.2 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℤ) → (𝐹‘-𝑥) = -(𝐹𝑥))
8063, 78, 79vtocl 3558 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 ∈ ℤ) → (𝐹‘-0) = -(𝐹‘0))
8162, 80mpan2 691 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹‘-0) = -(𝐹‘0))
8273, 81eqtr3id 2791 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹‘0) = -(𝐹‘0))
8371, 82eqnegad 11989 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹‘0) = 0)
8483adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐹‘0) = 0)
8584ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → (𝐹‘0) = 0)
86 nngt0 12297 . . . . . . . . . . . . . . 15 (-𝑎 ∈ ℕ → 0 < -𝑎)
8786adantl 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → 0 < -𝑎)
88 simplll 775 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → 𝜑)
89 0nn0 12541 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
9089a1i 11 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → 0 ∈ ℕ0)
91 simplrl 777 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → -𝑎 ∈ ℕ0)
92 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 0 ∧ 𝑦 = -𝑎) → 𝑥 = 0)
9392eleq1d 2826 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 0 ∧ 𝑦 = -𝑎) → (𝑥 ∈ ℕ0 ↔ 0 ∈ ℕ0))
94 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 0 ∧ 𝑦 = -𝑎) → 𝑦 = -𝑎)
9594eleq1d 2826 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 0 ∧ 𝑦 = -𝑎) → (𝑦 ∈ ℕ0 ↔ -𝑎 ∈ ℕ0))
9693, 953anbi23d 1441 . . . . . . . . . . . . . . . . 17 ((𝑥 = 0 ∧ 𝑦 = -𝑎) → ((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ↔ (𝜑 ∧ 0 ∈ ℕ0 ∧ -𝑎 ∈ ℕ0)))
97 breq12 5148 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 0 ∧ 𝑦 = -𝑎) → (𝑥 < 𝑦 ↔ 0 < -𝑎))
9892fveq2d 6910 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 0 ∧ 𝑦 = -𝑎) → (𝐹𝑥) = (𝐹‘0))
9994fveq2d 6910 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 0 ∧ 𝑦 = -𝑎) → (𝐹𝑦) = (𝐹‘-𝑎))
10098, 99breq12d 5156 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 0 ∧ 𝑦 = -𝑎) → ((𝐹𝑥) < (𝐹𝑦) ↔ (𝐹‘0) < (𝐹‘-𝑎)))
10197, 100imbi12d 344 . . . . . . . . . . . . . . . . 17 ((𝑥 = 0 ∧ 𝑦 = -𝑎) → ((𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ (0 < -𝑎 → (𝐹‘0) < (𝐹‘-𝑎))))
10296, 101imbi12d 344 . . . . . . . . . . . . . . . 16 ((𝑥 = 0 ∧ 𝑦 = -𝑎) → (((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦))) ↔ ((𝜑 ∧ 0 ∈ ℕ0 ∧ -𝑎 ∈ ℕ0) → (0 < -𝑎 → (𝐹‘0) < (𝐹‘-𝑎)))))
10363, 53, 102, 35vtocl2 3566 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 ∈ ℕ0 ∧ -𝑎 ∈ ℕ0) → (0 < -𝑎 → (𝐹‘0) < (𝐹‘-𝑎)))
10488, 90, 91, 103syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → (0 < -𝑎 → (𝐹‘0) < (𝐹‘-𝑎)))
10587, 104mpd 15 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → (𝐹‘0) < (𝐹‘-𝑎))
10685, 105eqbrtrrd 5167 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → 0 < (𝐹‘-𝑎))
10750, 61, 106ltled 11409 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 ∈ ℕ) → 0 ≤ (𝐹‘-𝑎))
108 0le0 12367 . . . . . . . . . . . . 13 0 ≤ 0
10984ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 = 0) → (𝐹‘0) = 0)
110108, 109breqtrrid 5181 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 = 0) → 0 ≤ (𝐹‘0))
111 fveq2 6906 . . . . . . . . . . . . . 14 (-𝑎 = 0 → (𝐹‘-𝑎) = (𝐹‘0))
112111breq2d 5155 . . . . . . . . . . . . 13 (-𝑎 = 0 → (0 ≤ (𝐹‘-𝑎) ↔ 0 ≤ (𝐹‘0)))
113112adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 = 0) → (0 ≤ (𝐹‘-𝑎) ↔ 0 ≤ (𝐹‘0)))
114110, 113mpbird 257 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) ∧ -𝑎 = 0) → 0 ≤ (𝐹‘-𝑎))
115 elnn0 12528 . . . . . . . . . . . . 13 (-𝑎 ∈ ℕ0 ↔ (-𝑎 ∈ ℕ ∨ -𝑎 = 0))
116115biimpi 216 . . . . . . . . . . . 12 (-𝑎 ∈ ℕ0 → (-𝑎 ∈ ℕ ∨ -𝑎 = 0))
117116ad2antrl 728 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → (-𝑎 ∈ ℕ ∨ -𝑎 = 0))
118107, 114, 117mpjaodan 961 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → 0 ≤ (𝐹‘-𝑎))
119 negeq 11500 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → -𝑥 = -𝑎)
120119fveq2d 6910 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝐹‘-𝑥) = (𝐹‘-𝑎))
1217negeqd 11502 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → -(𝐹𝑥) = -(𝐹𝑎))
122120, 121eqeq12d 2753 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((𝐹‘-𝑥) = -(𝐹𝑥) ↔ (𝐹‘-𝑎) = -(𝐹𝑎)))
1236, 122imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (((𝜑𝑥 ∈ ℤ) → (𝐹‘-𝑥) = -(𝐹𝑥)) ↔ ((𝜑𝑎 ∈ ℤ) → (𝐹‘-𝑎) = -(𝐹𝑎))))
124123, 79chvarvv 1998 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ ℤ) → (𝐹‘-𝑎) = -(𝐹𝑎))
125124adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐹‘-𝑎) = -(𝐹𝑎))
126125adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → (𝐹‘-𝑎) = -(𝐹𝑎))
127118, 126breqtrd 5169 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → 0 ≤ -(𝐹𝑎))
12840le0neg1d 11834 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → ((𝐹𝑎) ≤ 0 ↔ 0 ≤ -(𝐹𝑎)))
129127, 128mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → (𝐹𝑎) ≤ 0)
13084adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → (𝐹‘0) = 0)
131 nngt0 12297 . . . . . . . . . . 11 (𝑏 ∈ ℕ → 0 < 𝑏)
132131ad2antll 729 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → 0 < 𝑏)
133 simpll 767 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → 𝜑)
13489a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → 0 ∈ ℕ0)
13521ad2antll 729 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → 𝑏 ∈ ℕ0)
136 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 = 0 ∧ 𝑦 = 𝑏) → 𝑥 = 0)
137136eleq1d 2826 . . . . . . . . . . . . . 14 ((𝑥 = 0 ∧ 𝑦 = 𝑏) → (𝑥 ∈ ℕ0 ↔ 0 ∈ ℕ0))
138 simpr 484 . . . . . . . . . . . . . . 15 ((𝑥 = 0 ∧ 𝑦 = 𝑏) → 𝑦 = 𝑏)
139138eleq1d 2826 . . . . . . . . . . . . . 14 ((𝑥 = 0 ∧ 𝑦 = 𝑏) → (𝑦 ∈ ℕ0𝑏 ∈ ℕ0))
140137, 1393anbi23d 1441 . . . . . . . . . . . . 13 ((𝑥 = 0 ∧ 𝑦 = 𝑏) → ((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ↔ (𝜑 ∧ 0 ∈ ℕ0𝑏 ∈ ℕ0)))
141 breq12 5148 . . . . . . . . . . . . . 14 ((𝑥 = 0 ∧ 𝑦 = 𝑏) → (𝑥 < 𝑦 ↔ 0 < 𝑏))
14266, 31breqan12d 5159 . . . . . . . . . . . . . 14 ((𝑥 = 0 ∧ 𝑦 = 𝑏) → ((𝐹𝑥) < (𝐹𝑦) ↔ (𝐹‘0) < (𝐹𝑏)))
143141, 142imbi12d 344 . . . . . . . . . . . . 13 ((𝑥 = 0 ∧ 𝑦 = 𝑏) → ((𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ (0 < 𝑏 → (𝐹‘0) < (𝐹𝑏))))
144140, 143imbi12d 344 . . . . . . . . . . . 12 ((𝑥 = 0 ∧ 𝑦 = 𝑏) → (((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦))) ↔ ((𝜑 ∧ 0 ∈ ℕ0𝑏 ∈ ℕ0) → (0 < 𝑏 → (𝐹‘0) < (𝐹𝑏)))))
14563, 24, 144, 35vtocl2 3566 . . . . . . . . . . 11 ((𝜑 ∧ 0 ∈ ℕ0𝑏 ∈ ℕ0) → (0 < 𝑏 → (𝐹‘0) < (𝐹𝑏)))
146133, 134, 135, 145syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → (0 < 𝑏 → (𝐹‘0) < (𝐹𝑏)))
147132, 146mpd 15 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → (𝐹‘0) < (𝐹𝑏))
148130, 147eqbrtrrd 5167 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → 0 < (𝐹𝑏))
14940, 41, 49, 129, 148lelttrd 11419 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → (𝐹𝑎) < (𝐹𝑏))
150149a1d 25 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0𝑏 ∈ ℕ)) → (𝑎 < 𝑏 → (𝐹𝑎) < (𝐹𝑏)))
151150ex 412 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((-𝑎 ∈ ℕ0𝑏 ∈ ℕ) → (𝑎 < 𝑏 → (𝐹𝑎) < (𝐹𝑏))))
152 simp3 1139 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏)
153 zre 12617 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
154153adantl 481 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℝ)
155154ad2antlr 727 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 𝑏 ∈ ℝ)
156 1red 11262 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 1 ∈ ℝ)
157 nnre 12273 . . . . . . . . . . 11 (𝑎 ∈ ℕ → 𝑎 ∈ ℝ)
158157ad2antrl 728 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 𝑎 ∈ ℝ)
159 0red 11264 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 0 ∈ ℝ)
160 nn0ge0 12551 . . . . . . . . . . . . 13 (-𝑏 ∈ ℕ0 → 0 ≤ -𝑏)
161160ad2antll 729 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 0 ≤ -𝑏)
162155le0neg1d 11834 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → (𝑏 ≤ 0 ↔ 0 ≤ -𝑏))
163161, 162mpbird 257 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 𝑏 ≤ 0)
164 0le1 11786 . . . . . . . . . . . 12 0 ≤ 1
165164a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 0 ≤ 1)
166155, 159, 156, 163, 165letrd 11418 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 𝑏 ≤ 1)
167 nnge1 12294 . . . . . . . . . . 11 (𝑎 ∈ ℕ → 1 ≤ 𝑎)
168167ad2antrl 728 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 1 ≤ 𝑎)
169155, 156, 158, 166, 168letrd 11418 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → 𝑏𝑎)
170155, 158lenltd 11407 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → (𝑏𝑎 ↔ ¬ 𝑎 < 𝑏))
171169, 170mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0)) → ¬ 𝑎 < 𝑏)
1721713adant3 1133 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0) ∧ 𝑎 < 𝑏) → ¬ 𝑎 < 𝑏)
173152, 172pm2.21dd 195 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0) ∧ 𝑎 < 𝑏) → (𝐹𝑎) < (𝐹𝑏))
1741733exp 1120 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 ∈ ℕ ∧ -𝑏 ∈ ℕ0) → (𝑎 < 𝑏 → (𝐹𝑎) < (𝐹𝑏))))
175 negex 11506 . . . . . . . . . . . 12 -𝑏 ∈ V
176 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 = -𝑏𝑦 = -𝑎) → 𝑥 = -𝑏)
177176eleq1d 2826 . . . . . . . . . . . . . 14 ((𝑥 = -𝑏𝑦 = -𝑎) → (𝑥 ∈ ℕ0 ↔ -𝑏 ∈ ℕ0))
178 simpr 484 . . . . . . . . . . . . . . 15 ((𝑥 = -𝑏𝑦 = -𝑎) → 𝑦 = -𝑎)
179178eleq1d 2826 . . . . . . . . . . . . . 14 ((𝑥 = -𝑏𝑦 = -𝑎) → (𝑦 ∈ ℕ0 ↔ -𝑎 ∈ ℕ0))
180177, 1793anbi23d 1441 . . . . . . . . . . . . 13 ((𝑥 = -𝑏𝑦 = -𝑎) → ((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ↔ (𝜑 ∧ -𝑏 ∈ ℕ0 ∧ -𝑎 ∈ ℕ0)))
181 breq12 5148 . . . . . . . . . . . . . 14 ((𝑥 = -𝑏𝑦 = -𝑎) → (𝑥 < 𝑦 ↔ -𝑏 < -𝑎))
182 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑥 = -𝑏 → (𝐹𝑥) = (𝐹‘-𝑏))
183 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑦 = -𝑎 → (𝐹𝑦) = (𝐹‘-𝑎))
184182, 183breqan12d 5159 . . . . . . . . . . . . . 14 ((𝑥 = -𝑏𝑦 = -𝑎) → ((𝐹𝑥) < (𝐹𝑦) ↔ (𝐹‘-𝑏) < (𝐹‘-𝑎)))
185181, 184imbi12d 344 . . . . . . . . . . . . 13 ((𝑥 = -𝑏𝑦 = -𝑎) → ((𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ (-𝑏 < -𝑎 → (𝐹‘-𝑏) < (𝐹‘-𝑎))))
186180, 185imbi12d 344 . . . . . . . . . . . 12 ((𝑥 = -𝑏𝑦 = -𝑎) → (((𝜑𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦))) ↔ ((𝜑 ∧ -𝑏 ∈ ℕ0 ∧ -𝑎 ∈ ℕ0) → (-𝑏 < -𝑎 → (𝐹‘-𝑏) < (𝐹‘-𝑎)))))
187175, 53, 186, 35vtocl2 3566 . . . . . . . . . . 11 ((𝜑 ∧ -𝑏 ∈ ℕ0 ∧ -𝑎 ∈ ℕ0) → (-𝑏 < -𝑎 → (𝐹‘-𝑏) < (𝐹‘-𝑎)))
1881873com23 1127 . . . . . . . . . 10 ((𝜑 ∧ -𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0) → (-𝑏 < -𝑎 → (𝐹‘-𝑏) < (𝐹‘-𝑎)))
1891883expb 1121 . . . . . . . . 9 ((𝜑 ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)) → (-𝑏 < -𝑎 → (𝐹‘-𝑏) < (𝐹‘-𝑎)))
190189adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)) → (-𝑏 < -𝑎 → (𝐹‘-𝑏) < (𝐹‘-𝑎)))
191 negeq 11500 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → -𝑥 = -𝑏)
192191fveq2d 6910 . . . . . . . . . . . . . 14 (𝑥 = 𝑏 → (𝐹‘-𝑥) = (𝐹‘-𝑏))
19344negeqd 11502 . . . . . . . . . . . . . 14 (𝑥 = 𝑏 → -(𝐹𝑥) = -(𝐹𝑏))
194192, 193eqeq12d 2753 . . . . . . . . . . . . 13 (𝑥 = 𝑏 → ((𝐹‘-𝑥) = -(𝐹𝑥) ↔ (𝐹‘-𝑏) = -(𝐹𝑏)))
19543, 194imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑏 → (((𝜑𝑥 ∈ ℤ) → (𝐹‘-𝑥) = -(𝐹𝑥)) ↔ ((𝜑𝑏 ∈ ℤ) → (𝐹‘-𝑏) = -(𝐹𝑏))))
196195, 79chvarvv 1998 . . . . . . . . . . 11 ((𝜑𝑏 ∈ ℤ) → (𝐹‘-𝑏) = -(𝐹𝑏))
197196adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐹‘-𝑏) = -(𝐹𝑏))
198197adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)) → (𝐹‘-𝑏) = -(𝐹𝑏))
199125adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)) → (𝐹‘-𝑎) = -(𝐹𝑎))
200198, 199breq12d 5156 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)) → ((𝐹‘-𝑏) < (𝐹‘-𝑎) ↔ -(𝐹𝑏) < -(𝐹𝑎)))
201190, 200sylibd 239 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)) → (-𝑏 < -𝑎 → -(𝐹𝑏) < -(𝐹𝑎)))
202 zre 12617 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
203202ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℝ)
204203adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)) → 𝑎 ∈ ℝ)
205154ad2antlr 727 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)) → 𝑏 ∈ ℝ)
206204, 205ltnegd 11841 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)) → (𝑎 < 𝑏 ↔ -𝑏 < -𝑎))
20739adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)) → (𝐹𝑎) ∈ ℝ)
20848adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)) → (𝐹𝑏) ∈ ℝ)
209207, 208ltnegd 11841 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)) → ((𝐹𝑎) < (𝐹𝑏) ↔ -(𝐹𝑏) < -(𝐹𝑎)))
210201, 206, 2093imtr4d 294 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0)) → (𝑎 < 𝑏 → (𝐹𝑎) < (𝐹𝑏)))
211210ex 412 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℕ0) → (𝑎 < 𝑏 → (𝐹𝑎) < (𝐹𝑏))))
21238, 151, 174, 211ccased 1039 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ0) ∧ (𝑏 ∈ ℕ ∨ -𝑏 ∈ ℕ0)) → (𝑎 < 𝑏 → (𝐹𝑎) < (𝐹𝑏))))
21317, 212mpd 15 . . 3 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 < 𝑏 → (𝐹𝑎) < (𝐹𝑏)))
2141, 2, 3, 4, 11, 213ltord1 11789 . 2 ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝐴 < 𝐵 ↔ (𝐹𝐴) < (𝐹𝐵)))
2152143impb 1115 1 ((𝜑𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐹𝐴) < (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  cr 11154  0cc0 11155  1c1 11156   < clt 11295  cle 11296  -cneg 11493  cn 12266  0cn0 12526  cz 12613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614
This theorem is referenced by:  monotoddzz  42955
  Copyright terms: Public domain W3C validator