MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipodrsima Structured version   Visualization version   GIF version

Theorem ipodrsima 17477
Description: The monotone image of a directed set. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypotheses
Ref Expression
ipodrsima.f (𝜑𝐹 Fn 𝒫 𝐴)
ipodrsima.m ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣))
ipodrsima.d (𝜑 → (toInc‘𝐵) ∈ Dirset)
ipodrsima.s (𝜑𝐵 ⊆ 𝒫 𝐴)
ipodrsima.a (𝜑 → (𝐹𝐵) ∈ 𝑉)
Assertion
Ref Expression
ipodrsima (𝜑 → (toInc‘(𝐹𝐵)) ∈ Dirset)
Distinct variable groups:   𝜑,𝑢,𝑣   𝑢,𝐴,𝑣   𝑢,𝐹,𝑣
Allowed substitution hints:   𝐵(𝑣,𝑢)   𝑉(𝑣,𝑢)

Proof of Theorem ipodrsima
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipodrsima.a . . 3 (𝜑 → (𝐹𝐵) ∈ 𝑉)
2 elex 3398 . . 3 ((𝐹𝐵) ∈ 𝑉 → (𝐹𝐵) ∈ V)
31, 2syl 17 . 2 (𝜑 → (𝐹𝐵) ∈ V)
4 ipodrsima.d . . . . 5 (𝜑 → (toInc‘𝐵) ∈ Dirset)
5 isipodrs 17473 . . . . 5 ((toInc‘𝐵) ∈ Dirset ↔ (𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐))
64, 5sylib 210 . . . 4 (𝜑 → (𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐))
76simp2d 1174 . . 3 (𝜑𝐵 ≠ ∅)
8 ipodrsima.f . . . . 5 (𝜑𝐹 Fn 𝒫 𝐴)
9 ipodrsima.s . . . . 5 (𝜑𝐵 ⊆ 𝒫 𝐴)
10 fnimaeq0 6222 . . . . 5 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
118, 9, 10syl2anc 580 . . . 4 (𝜑 → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
1211necon3bid 3013 . . 3 (𝜑 → ((𝐹𝐵) ≠ ∅ ↔ 𝐵 ≠ ∅))
137, 12mpbird 249 . 2 (𝜑 → (𝐹𝐵) ≠ ∅)
146simp3d 1175 . . . 4 (𝜑 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐)
15 simplll 792 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → 𝜑)
16 simpr 478 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → 𝑎𝑐)
179ad2antrr 718 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝐵 ⊆ 𝒫 𝐴)
18 simprr 790 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
1917, 18sseldd 3797 . . . . . . . . . . . . . 14 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝑐 ∈ 𝒫 𝐴)
2019elpwid 4359 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝑐𝐴)
2120adantr 473 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → 𝑐𝐴)
22 vex 3386 . . . . . . . . . . . . 13 𝑎 ∈ V
23 vex 3386 . . . . . . . . . . . . 13 𝑐 ∈ V
24 sseq12 3822 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑎𝑣 = 𝑐) → (𝑢𝑣𝑎𝑐))
25 sseq1 3820 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑐 → (𝑣𝐴𝑐𝐴))
2625adantl 474 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑎𝑣 = 𝑐) → (𝑣𝐴𝑐𝐴))
2724, 26anbi12d 625 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑎𝑣 = 𝑐) → ((𝑢𝑣𝑣𝐴) ↔ (𝑎𝑐𝑐𝐴)))
2827anbi2d 623 . . . . . . . . . . . . . 14 ((𝑢 = 𝑎𝑣 = 𝑐) → ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) ↔ (𝜑 ∧ (𝑎𝑐𝑐𝐴))))
29 fveq2 6409 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → (𝐹𝑢) = (𝐹𝑎))
30 fveq2 6409 . . . . . . . . . . . . . . 15 (𝑣 = 𝑐 → (𝐹𝑣) = (𝐹𝑐))
31 sseq12 3822 . . . . . . . . . . . . . . 15 (((𝐹𝑢) = (𝐹𝑎) ∧ (𝐹𝑣) = (𝐹𝑐)) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑎) ⊆ (𝐹𝑐)))
3229, 30, 31syl2an 590 . . . . . . . . . . . . . 14 ((𝑢 = 𝑎𝑣 = 𝑐) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑎) ⊆ (𝐹𝑐)))
3328, 32imbi12d 336 . . . . . . . . . . . . 13 ((𝑢 = 𝑎𝑣 = 𝑐) → (((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣)) ↔ ((𝜑 ∧ (𝑎𝑐𝑐𝐴)) → (𝐹𝑎) ⊆ (𝐹𝑐))))
34 ipodrsima.m . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣))
3522, 23, 33, 34vtocl2 3446 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝑐𝑐𝐴)) → (𝐹𝑎) ⊆ (𝐹𝑐))
3615, 16, 21, 35syl12anc 866 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → (𝐹𝑎) ⊆ (𝐹𝑐))
3736ex 402 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → (𝑎𝑐 → (𝐹𝑎) ⊆ (𝐹𝑐)))
38 simplll 792 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → 𝜑)
39 simpr 478 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → 𝑏𝑐)
4020adantr 473 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → 𝑐𝐴)
41 vex 3386 . . . . . . . . . . . . 13 𝑏 ∈ V
42 sseq12 3822 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑏𝑣 = 𝑐) → (𝑢𝑣𝑏𝑐))
4325adantl 474 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑏𝑣 = 𝑐) → (𝑣𝐴𝑐𝐴))
4442, 43anbi12d 625 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑏𝑣 = 𝑐) → ((𝑢𝑣𝑣𝐴) ↔ (𝑏𝑐𝑐𝐴)))
4544anbi2d 623 . . . . . . . . . . . . . 14 ((𝑢 = 𝑏𝑣 = 𝑐) → ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) ↔ (𝜑 ∧ (𝑏𝑐𝑐𝐴))))
46 fveq2 6409 . . . . . . . . . . . . . . 15 (𝑢 = 𝑏 → (𝐹𝑢) = (𝐹𝑏))
47 sseq12 3822 . . . . . . . . . . . . . . 15 (((𝐹𝑢) = (𝐹𝑏) ∧ (𝐹𝑣) = (𝐹𝑐)) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑏) ⊆ (𝐹𝑐)))
4846, 30, 47syl2an 590 . . . . . . . . . . . . . 14 ((𝑢 = 𝑏𝑣 = 𝑐) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑏) ⊆ (𝐹𝑐)))
4945, 48imbi12d 336 . . . . . . . . . . . . 13 ((𝑢 = 𝑏𝑣 = 𝑐) → (((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣)) ↔ ((𝜑 ∧ (𝑏𝑐𝑐𝐴)) → (𝐹𝑏) ⊆ (𝐹𝑐))))
5041, 23, 49, 34vtocl2 3446 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝑐𝑐𝐴)) → (𝐹𝑏) ⊆ (𝐹𝑐))
5138, 39, 40, 50syl12anc 866 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → (𝐹𝑏) ⊆ (𝐹𝑐))
5251ex 402 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → (𝑏𝑐 → (𝐹𝑏) ⊆ (𝐹𝑐)))
5337, 52anim12d 603 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → ((𝑎𝑐𝑏𝑐) → ((𝐹𝑎) ⊆ (𝐹𝑐) ∧ (𝐹𝑏) ⊆ (𝐹𝑐))))
54 unss 3983 . . . . . . . . 9 ((𝑎𝑐𝑏𝑐) ↔ (𝑎𝑏) ⊆ 𝑐)
55 unss 3983 . . . . . . . . 9 (((𝐹𝑎) ⊆ (𝐹𝑐) ∧ (𝐹𝑏) ⊆ (𝐹𝑐)) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
5653, 54, 553imtr3g 287 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → ((𝑎𝑏) ⊆ 𝑐 → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5756anassrs 460 . . . . . . 7 ((((𝜑𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) → ((𝑎𝑏) ⊆ 𝑐 → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5857reximdva 3195 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (∃𝑐𝐵 (𝑎𝑏) ⊆ 𝑐 → ∃𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5958ralimdva 3141 . . . . 5 ((𝜑𝑎𝐵) → (∀𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐 → ∀𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
6059ralimdva 3141 . . . 4 (𝜑 → (∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
6114, 60mpd 15 . . 3 (𝜑 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
62 uneq1 3956 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥𝑦) = ((𝐹𝑎) ∪ 𝑦))
6362sseq1d 3826 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝑥𝑦) ⊆ 𝑧 ↔ ((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
6463rexbidv 3231 . . . . . . 7 (𝑥 = (𝐹𝑎) → (∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
6564ralbidv 3165 . . . . . 6 (𝑥 = (𝐹𝑎) → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
6665ralima 6725 . . . . 5 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → (∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
678, 9, 66syl2anc 580 . . . 4 (𝜑 → (∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
68 uneq2 3957 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) ∪ 𝑦) = ((𝐹𝑎) ∪ (𝐹𝑏)))
6968sseq1d 3826 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
7069rexbidv 3231 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
7170ralima 6725 . . . . . . 7 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
728, 9, 71syl2anc 580 . . . . . 6 (𝜑 → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
73 sseq2 3821 . . . . . . . . 9 (𝑧 = (𝐹𝑐) → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7473rexima 6724 . . . . . . . 8 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → (∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ∃𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
758, 9, 74syl2anc 580 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ∃𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7675ralbidv 3165 . . . . . 6 (𝜑 → (∀𝑏𝐵𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7772, 76bitrd 271 . . . . 5 (𝜑 → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7877ralbidv 3165 . . . 4 (𝜑 → (∀𝑎𝐵𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7967, 78bitrd 271 . . 3 (𝜑 → (∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8061, 79mpbird 249 . 2 (𝜑 → ∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧)
81 isipodrs 17473 . 2 ((toInc‘(𝐹𝐵)) ∈ Dirset ↔ ((𝐹𝐵) ∈ V ∧ (𝐹𝐵) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧))
823, 13, 80, 81syl3anbrc 1444 1 (𝜑 → (toInc‘(𝐹𝐵)) ∈ Dirset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2969  wral 3087  wrex 3088  Vcvv 3383  cun 3765  wss 3767  c0 4113  𝒫 cpw 4347  cima 5313   Fn wfn 6094  cfv 6099  Dirsetcdrs 17239  toInccipo 17463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-dec 11780  df-uz 11927  df-fz 12577  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-tset 16283  df-ple 16284  df-ocomp 16285  df-proset 17240  df-drs 17241  df-poset 17258  df-ipo 17464
This theorem is referenced by:  isacs4lem  17480  isnacs3  38047
  Copyright terms: Public domain W3C validator