Step | Hyp | Ref
| Expression |
1 | | ipodrsima.a |
. . 3
⊢ (𝜑 → (𝐹 “ 𝐵) ∈ 𝑉) |
2 | 1 | elexd 3450 |
. 2
⊢ (𝜑 → (𝐹 “ 𝐵) ∈ V) |
3 | | ipodrsima.d |
. . . . 5
⊢ (𝜑 → (toInc‘𝐵) ∈
Dirset) |
4 | | isipodrs 18236 |
. . . . 5
⊢
((toInc‘𝐵)
∈ Dirset ↔ (𝐵
∈ V ∧ 𝐵 ≠
∅ ∧ ∀𝑎
∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎 ∪ 𝑏) ⊆ 𝑐)) |
5 | 3, 4 | sylib 217 |
. . . 4
⊢ (𝜑 → (𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎 ∪ 𝑏) ⊆ 𝑐)) |
6 | 5 | simp2d 1141 |
. . 3
⊢ (𝜑 → 𝐵 ≠ ∅) |
7 | | ipodrsima.f |
. . . . 5
⊢ (𝜑 → 𝐹 Fn 𝒫 𝐴) |
8 | | ipodrsima.s |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝒫 𝐴) |
9 | | fnimaeq0 6562 |
. . . . 5
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴) → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
10 | 7, 8, 9 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
11 | 10 | necon3bid 2989 |
. . 3
⊢ (𝜑 → ((𝐹 “ 𝐵) ≠ ∅ ↔ 𝐵 ≠ ∅)) |
12 | 6, 11 | mpbird 256 |
. 2
⊢ (𝜑 → (𝐹 “ 𝐵) ≠ ∅) |
13 | 5 | simp3d 1142 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎 ∪ 𝑏) ⊆ 𝑐) |
14 | | simplll 771 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑎 ⊆ 𝑐) → 𝜑) |
15 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑎 ⊆ 𝑐) → 𝑎 ⊆ 𝑐) |
16 | 8 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝐵 ⊆ 𝒫 𝐴) |
17 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑐 ∈ 𝐵) |
18 | 16, 17 | sseldd 3926 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑐 ∈ 𝒫 𝐴) |
19 | 18 | elpwid 4549 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑐 ⊆ 𝐴) |
20 | 19 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑎 ⊆ 𝑐) → 𝑐 ⊆ 𝐴) |
21 | | vex 3434 |
. . . . . . . . . . . . 13
⊢ 𝑎 ∈ V |
22 | | vex 3434 |
. . . . . . . . . . . . 13
⊢ 𝑐 ∈ V |
23 | | sseq12 3952 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑐) → (𝑢 ⊆ 𝑣 ↔ 𝑎 ⊆ 𝑐)) |
24 | | sseq1 3950 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑐 → (𝑣 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴)) |
25 | 24 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑐) → (𝑣 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴)) |
26 | 23, 25 | anbi12d 630 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑐) → ((𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴) ↔ (𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴))) |
27 | 26 | anbi2d 628 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑐) → ((𝜑 ∧ (𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴)) ↔ (𝜑 ∧ (𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴)))) |
28 | | fveq2 6768 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑎 → (𝐹‘𝑢) = (𝐹‘𝑎)) |
29 | | fveq2 6768 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑐 → (𝐹‘𝑣) = (𝐹‘𝑐)) |
30 | | sseq12 3952 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑢) = (𝐹‘𝑎) ∧ (𝐹‘𝑣) = (𝐹‘𝑐)) → ((𝐹‘𝑢) ⊆ (𝐹‘𝑣) ↔ (𝐹‘𝑎) ⊆ (𝐹‘𝑐))) |
31 | 28, 29, 30 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑐) → ((𝐹‘𝑢) ⊆ (𝐹‘𝑣) ↔ (𝐹‘𝑎) ⊆ (𝐹‘𝑐))) |
32 | 27, 31 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑐) → (((𝜑 ∧ (𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴)) → (𝐹‘𝑢) ⊆ (𝐹‘𝑣)) ↔ ((𝜑 ∧ (𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴)) → (𝐹‘𝑎) ⊆ (𝐹‘𝑐)))) |
33 | | ipodrsima.m |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴)) → (𝐹‘𝑢) ⊆ (𝐹‘𝑣)) |
34 | 21, 22, 32, 33 | vtocl2 3498 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴)) → (𝐹‘𝑎) ⊆ (𝐹‘𝑐)) |
35 | 14, 15, 20, 34 | syl12anc 833 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑎 ⊆ 𝑐) → (𝐹‘𝑎) ⊆ (𝐹‘𝑐)) |
36 | 35 | ex 412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎 ⊆ 𝑐 → (𝐹‘𝑎) ⊆ (𝐹‘𝑐))) |
37 | | simplll 771 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑏 ⊆ 𝑐) → 𝜑) |
38 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑏 ⊆ 𝑐) → 𝑏 ⊆ 𝑐) |
39 | 19 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑏 ⊆ 𝑐) → 𝑐 ⊆ 𝐴) |
40 | | vex 3434 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ V |
41 | | sseq12 3952 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 = 𝑏 ∧ 𝑣 = 𝑐) → (𝑢 ⊆ 𝑣 ↔ 𝑏 ⊆ 𝑐)) |
42 | 24 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 = 𝑏 ∧ 𝑣 = 𝑐) → (𝑣 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴)) |
43 | 41, 42 | anbi12d 630 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 = 𝑏 ∧ 𝑣 = 𝑐) → ((𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴) ↔ (𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴))) |
44 | 43 | anbi2d 628 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑏 ∧ 𝑣 = 𝑐) → ((𝜑 ∧ (𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴)) ↔ (𝜑 ∧ (𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴)))) |
45 | | fveq2 6768 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑏 → (𝐹‘𝑢) = (𝐹‘𝑏)) |
46 | | sseq12 3952 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑢) = (𝐹‘𝑏) ∧ (𝐹‘𝑣) = (𝐹‘𝑐)) → ((𝐹‘𝑢) ⊆ (𝐹‘𝑣) ↔ (𝐹‘𝑏) ⊆ (𝐹‘𝑐))) |
47 | 45, 29, 46 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑏 ∧ 𝑣 = 𝑐) → ((𝐹‘𝑢) ⊆ (𝐹‘𝑣) ↔ (𝐹‘𝑏) ⊆ (𝐹‘𝑐))) |
48 | 44, 47 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = 𝑏 ∧ 𝑣 = 𝑐) → (((𝜑 ∧ (𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴)) → (𝐹‘𝑢) ⊆ (𝐹‘𝑣)) ↔ ((𝜑 ∧ (𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴)) → (𝐹‘𝑏) ⊆ (𝐹‘𝑐)))) |
49 | 40, 22, 48, 33 | vtocl2 3498 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴)) → (𝐹‘𝑏) ⊆ (𝐹‘𝑐)) |
50 | 37, 38, 39, 49 | syl12anc 833 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑏 ⊆ 𝑐) → (𝐹‘𝑏) ⊆ (𝐹‘𝑐)) |
51 | 50 | ex 412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑏 ⊆ 𝑐 → (𝐹‘𝑏) ⊆ (𝐹‘𝑐))) |
52 | 36, 51 | anim12d 608 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎 ⊆ 𝑐 ∧ 𝑏 ⊆ 𝑐) → ((𝐹‘𝑎) ⊆ (𝐹‘𝑐) ∧ (𝐹‘𝑏) ⊆ (𝐹‘𝑐)))) |
53 | | unss 4122 |
. . . . . . . . 9
⊢ ((𝑎 ⊆ 𝑐 ∧ 𝑏 ⊆ 𝑐) ↔ (𝑎 ∪ 𝑏) ⊆ 𝑐) |
54 | | unss 4122 |
. . . . . . . . 9
⊢ (((𝐹‘𝑎) ⊆ (𝐹‘𝑐) ∧ (𝐹‘𝑏) ⊆ (𝐹‘𝑐)) ↔ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐)) |
55 | 52, 53, 54 | 3imtr3g 294 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎 ∪ 𝑏) ⊆ 𝑐 → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
56 | 55 | anassrs 467 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → ((𝑎 ∪ 𝑏) ⊆ 𝑐 → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
57 | 56 | reximdva 3204 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (∃𝑐 ∈ 𝐵 (𝑎 ∪ 𝑏) ⊆ 𝑐 → ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
58 | 57 | ralimdva 3104 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎 ∪ 𝑏) ⊆ 𝑐 → ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
59 | 58 | ralimdva 3104 |
. . . 4
⊢ (𝜑 → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎 ∪ 𝑏) ⊆ 𝑐 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
60 | 13, 59 | mpd 15 |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐)) |
61 | | uneq1 4094 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑎) → (𝑥 ∪ 𝑦) = ((𝐹‘𝑎) ∪ 𝑦)) |
62 | 61 | sseq1d 3956 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑎) → ((𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ ((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧)) |
63 | 62 | rexbidv 3227 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑎) → (∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧)) |
64 | 63 | ralbidv 3122 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑎) → (∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧)) |
65 | 64 | ralima 7108 |
. . . . 5
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑎 ∈ 𝐵 ∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧)) |
66 | 7, 8, 65 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ (𝐹 “ 𝐵)∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑎 ∈ 𝐵 ∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧)) |
67 | | uneq2 4095 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑏) → ((𝐹‘𝑎) ∪ 𝑦) = ((𝐹‘𝑎) ∪ (𝐹‘𝑏))) |
68 | 67 | sseq1d 3956 |
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑏) → (((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧)) |
69 | 68 | rexbidv 3227 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑏) → (∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧)) |
70 | 69 | ralima 7108 |
. . . . . . 7
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴) → (∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏 ∈ 𝐵 ∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧)) |
71 | 7, 8, 70 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏 ∈ 𝐵 ∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧)) |
72 | | sseq2 3951 |
. . . . . . . . 9
⊢ (𝑧 = (𝐹‘𝑐) → (((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧 ↔ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
73 | 72 | rexima 7107 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴) → (∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧 ↔ ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
74 | 7, 8, 73 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧 ↔ ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
75 | 74 | ralbidv 3122 |
. . . . . 6
⊢ (𝜑 → (∀𝑏 ∈ 𝐵 ∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧 ↔ ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
76 | 71, 75 | bitrd 278 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
77 | 76 | ralbidv 3122 |
. . . 4
⊢ (𝜑 → (∀𝑎 ∈ 𝐵 ∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
78 | 66, 77 | bitrd 278 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ (𝐹 “ 𝐵)∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
79 | 60, 78 | mpbird 256 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (𝐹 “ 𝐵)∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
80 | | isipodrs 18236 |
. 2
⊢
((toInc‘(𝐹
“ 𝐵)) ∈ Dirset
↔ ((𝐹 “ 𝐵) ∈ V ∧ (𝐹 “ 𝐵) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹 “ 𝐵)∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧)) |
81 | 2, 12, 79, 80 | syl3anbrc 1341 |
1
⊢ (𝜑 → (toInc‘(𝐹 “ 𝐵)) ∈ Dirset) |