MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipodrsima Structured version   Visualization version   GIF version

Theorem ipodrsima 17518
Description: The monotone image of a directed set. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypotheses
Ref Expression
ipodrsima.f (𝜑𝐹 Fn 𝒫 𝐴)
ipodrsima.m ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣))
ipodrsima.d (𝜑 → (toInc‘𝐵) ∈ Dirset)
ipodrsima.s (𝜑𝐵 ⊆ 𝒫 𝐴)
ipodrsima.a (𝜑 → (𝐹𝐵) ∈ 𝑉)
Assertion
Ref Expression
ipodrsima (𝜑 → (toInc‘(𝐹𝐵)) ∈ Dirset)
Distinct variable groups:   𝜑,𝑢,𝑣   𝑢,𝐴,𝑣   𝑢,𝐹,𝑣
Allowed substitution hints:   𝐵(𝑣,𝑢)   𝑉(𝑣,𝑢)

Proof of Theorem ipodrsima
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipodrsima.a . . 3 (𝜑 → (𝐹𝐵) ∈ 𝑉)
2 elex 3429 . . 3 ((𝐹𝐵) ∈ 𝑉 → (𝐹𝐵) ∈ V)
31, 2syl 17 . 2 (𝜑 → (𝐹𝐵) ∈ V)
4 ipodrsima.d . . . . 5 (𝜑 → (toInc‘𝐵) ∈ Dirset)
5 isipodrs 17514 . . . . 5 ((toInc‘𝐵) ∈ Dirset ↔ (𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐))
64, 5sylib 210 . . . 4 (𝜑 → (𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐))
76simp2d 1177 . . 3 (𝜑𝐵 ≠ ∅)
8 ipodrsima.f . . . . 5 (𝜑𝐹 Fn 𝒫 𝐴)
9 ipodrsima.s . . . . 5 (𝜑𝐵 ⊆ 𝒫 𝐴)
10 fnimaeq0 6246 . . . . 5 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
118, 9, 10syl2anc 579 . . . 4 (𝜑 → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
1211necon3bid 3043 . . 3 (𝜑 → ((𝐹𝐵) ≠ ∅ ↔ 𝐵 ≠ ∅))
137, 12mpbird 249 . 2 (𝜑 → (𝐹𝐵) ≠ ∅)
146simp3d 1178 . . . 4 (𝜑 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐)
15 simplll 791 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → 𝜑)
16 simpr 479 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → 𝑎𝑐)
179ad2antrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝐵 ⊆ 𝒫 𝐴)
18 simprr 789 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
1917, 18sseldd 3828 . . . . . . . . . . . . . 14 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝑐 ∈ 𝒫 𝐴)
2019elpwid 4390 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝑐𝐴)
2120adantr 474 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → 𝑐𝐴)
22 vex 3417 . . . . . . . . . . . . 13 𝑎 ∈ V
23 vex 3417 . . . . . . . . . . . . 13 𝑐 ∈ V
24 sseq12 3853 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑎𝑣 = 𝑐) → (𝑢𝑣𝑎𝑐))
25 sseq1 3851 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑐 → (𝑣𝐴𝑐𝐴))
2625adantl 475 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑎𝑣 = 𝑐) → (𝑣𝐴𝑐𝐴))
2724, 26anbi12d 624 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑎𝑣 = 𝑐) → ((𝑢𝑣𝑣𝐴) ↔ (𝑎𝑐𝑐𝐴)))
2827anbi2d 622 . . . . . . . . . . . . . 14 ((𝑢 = 𝑎𝑣 = 𝑐) → ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) ↔ (𝜑 ∧ (𝑎𝑐𝑐𝐴))))
29 fveq2 6433 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → (𝐹𝑢) = (𝐹𝑎))
30 fveq2 6433 . . . . . . . . . . . . . . 15 (𝑣 = 𝑐 → (𝐹𝑣) = (𝐹𝑐))
31 sseq12 3853 . . . . . . . . . . . . . . 15 (((𝐹𝑢) = (𝐹𝑎) ∧ (𝐹𝑣) = (𝐹𝑐)) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑎) ⊆ (𝐹𝑐)))
3229, 30, 31syl2an 589 . . . . . . . . . . . . . 14 ((𝑢 = 𝑎𝑣 = 𝑐) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑎) ⊆ (𝐹𝑐)))
3328, 32imbi12d 336 . . . . . . . . . . . . 13 ((𝑢 = 𝑎𝑣 = 𝑐) → (((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣)) ↔ ((𝜑 ∧ (𝑎𝑐𝑐𝐴)) → (𝐹𝑎) ⊆ (𝐹𝑐))))
34 ipodrsima.m . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣))
3522, 23, 33, 34vtocl2 3477 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝑐𝑐𝐴)) → (𝐹𝑎) ⊆ (𝐹𝑐))
3615, 16, 21, 35syl12anc 870 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → (𝐹𝑎) ⊆ (𝐹𝑐))
3736ex 403 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → (𝑎𝑐 → (𝐹𝑎) ⊆ (𝐹𝑐)))
38 simplll 791 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → 𝜑)
39 simpr 479 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → 𝑏𝑐)
4020adantr 474 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → 𝑐𝐴)
41 vex 3417 . . . . . . . . . . . . 13 𝑏 ∈ V
42 sseq12 3853 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑏𝑣 = 𝑐) → (𝑢𝑣𝑏𝑐))
4325adantl 475 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑏𝑣 = 𝑐) → (𝑣𝐴𝑐𝐴))
4442, 43anbi12d 624 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑏𝑣 = 𝑐) → ((𝑢𝑣𝑣𝐴) ↔ (𝑏𝑐𝑐𝐴)))
4544anbi2d 622 . . . . . . . . . . . . . 14 ((𝑢 = 𝑏𝑣 = 𝑐) → ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) ↔ (𝜑 ∧ (𝑏𝑐𝑐𝐴))))
46 fveq2 6433 . . . . . . . . . . . . . . 15 (𝑢 = 𝑏 → (𝐹𝑢) = (𝐹𝑏))
47 sseq12 3853 . . . . . . . . . . . . . . 15 (((𝐹𝑢) = (𝐹𝑏) ∧ (𝐹𝑣) = (𝐹𝑐)) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑏) ⊆ (𝐹𝑐)))
4846, 30, 47syl2an 589 . . . . . . . . . . . . . 14 ((𝑢 = 𝑏𝑣 = 𝑐) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑏) ⊆ (𝐹𝑐)))
4945, 48imbi12d 336 . . . . . . . . . . . . 13 ((𝑢 = 𝑏𝑣 = 𝑐) → (((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣)) ↔ ((𝜑 ∧ (𝑏𝑐𝑐𝐴)) → (𝐹𝑏) ⊆ (𝐹𝑐))))
5041, 23, 49, 34vtocl2 3477 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝑐𝑐𝐴)) → (𝐹𝑏) ⊆ (𝐹𝑐))
5138, 39, 40, 50syl12anc 870 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → (𝐹𝑏) ⊆ (𝐹𝑐))
5251ex 403 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → (𝑏𝑐 → (𝐹𝑏) ⊆ (𝐹𝑐)))
5337, 52anim12d 602 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → ((𝑎𝑐𝑏𝑐) → ((𝐹𝑎) ⊆ (𝐹𝑐) ∧ (𝐹𝑏) ⊆ (𝐹𝑐))))
54 unss 4014 . . . . . . . . 9 ((𝑎𝑐𝑏𝑐) ↔ (𝑎𝑏) ⊆ 𝑐)
55 unss 4014 . . . . . . . . 9 (((𝐹𝑎) ⊆ (𝐹𝑐) ∧ (𝐹𝑏) ⊆ (𝐹𝑐)) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
5653, 54, 553imtr3g 287 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → ((𝑎𝑏) ⊆ 𝑐 → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5756anassrs 461 . . . . . . 7 ((((𝜑𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) → ((𝑎𝑏) ⊆ 𝑐 → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5857reximdva 3225 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (∃𝑐𝐵 (𝑎𝑏) ⊆ 𝑐 → ∃𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5958ralimdva 3171 . . . . 5 ((𝜑𝑎𝐵) → (∀𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐 → ∀𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
6059ralimdva 3171 . . . 4 (𝜑 → (∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
6114, 60mpd 15 . . 3 (𝜑 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
62 uneq1 3987 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥𝑦) = ((𝐹𝑎) ∪ 𝑦))
6362sseq1d 3857 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝑥𝑦) ⊆ 𝑧 ↔ ((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
6463rexbidv 3262 . . . . . . 7 (𝑥 = (𝐹𝑎) → (∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
6564ralbidv 3195 . . . . . 6 (𝑥 = (𝐹𝑎) → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
6665ralima 6754 . . . . 5 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → (∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
678, 9, 66syl2anc 579 . . . 4 (𝜑 → (∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
68 uneq2 3988 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) ∪ 𝑦) = ((𝐹𝑎) ∪ (𝐹𝑏)))
6968sseq1d 3857 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
7069rexbidv 3262 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
7170ralima 6754 . . . . . . 7 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
728, 9, 71syl2anc 579 . . . . . 6 (𝜑 → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
73 sseq2 3852 . . . . . . . . 9 (𝑧 = (𝐹𝑐) → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7473rexima 6753 . . . . . . . 8 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → (∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ∃𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
758, 9, 74syl2anc 579 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ∃𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7675ralbidv 3195 . . . . . 6 (𝜑 → (∀𝑏𝐵𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7772, 76bitrd 271 . . . . 5 (𝜑 → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7877ralbidv 3195 . . . 4 (𝜑 → (∀𝑎𝐵𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7967, 78bitrd 271 . . 3 (𝜑 → (∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8061, 79mpbird 249 . 2 (𝜑 → ∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧)
81 isipodrs 17514 . 2 ((toInc‘(𝐹𝐵)) ∈ Dirset ↔ ((𝐹𝐵) ∈ V ∧ (𝐹𝐵) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧))
823, 13, 80, 81syl3anbrc 1447 1 (𝜑 → (toInc‘(𝐹𝐵)) ∈ Dirset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  wral 3117  wrex 3118  Vcvv 3414  cun 3796  wss 3798  c0 4144  𝒫 cpw 4378  cima 5345   Fn wfn 6118  cfv 6123  Dirsetcdrs 17280  toInccipo 17504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-fz 12620  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-tset 16324  df-ple 16325  df-ocomp 16326  df-proset 17281  df-drs 17282  df-poset 17299  df-ipo 17505
This theorem is referenced by:  isacs4lem  17521  isnacs3  38110
  Copyright terms: Public domain W3C validator