MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipodrsima Structured version   Visualization version   GIF version

Theorem ipodrsima 18240
Description: The monotone image of a directed set. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypotheses
Ref Expression
ipodrsima.f (𝜑𝐹 Fn 𝒫 𝐴)
ipodrsima.m ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣))
ipodrsima.d (𝜑 → (toInc‘𝐵) ∈ Dirset)
ipodrsima.s (𝜑𝐵 ⊆ 𝒫 𝐴)
ipodrsima.a (𝜑 → (𝐹𝐵) ∈ 𝑉)
Assertion
Ref Expression
ipodrsima (𝜑 → (toInc‘(𝐹𝐵)) ∈ Dirset)
Distinct variable groups:   𝜑,𝑢,𝑣   𝑢,𝐴,𝑣   𝑢,𝐹,𝑣
Allowed substitution hints:   𝐵(𝑣,𝑢)   𝑉(𝑣,𝑢)

Proof of Theorem ipodrsima
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipodrsima.a . . 3 (𝜑 → (𝐹𝐵) ∈ 𝑉)
21elexd 3450 . 2 (𝜑 → (𝐹𝐵) ∈ V)
3 ipodrsima.d . . . . 5 (𝜑 → (toInc‘𝐵) ∈ Dirset)
4 isipodrs 18236 . . . . 5 ((toInc‘𝐵) ∈ Dirset ↔ (𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐))
53, 4sylib 217 . . . 4 (𝜑 → (𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐))
65simp2d 1141 . . 3 (𝜑𝐵 ≠ ∅)
7 ipodrsima.f . . . . 5 (𝜑𝐹 Fn 𝒫 𝐴)
8 ipodrsima.s . . . . 5 (𝜑𝐵 ⊆ 𝒫 𝐴)
9 fnimaeq0 6562 . . . . 5 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
107, 8, 9syl2anc 583 . . . 4 (𝜑 → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
1110necon3bid 2989 . . 3 (𝜑 → ((𝐹𝐵) ≠ ∅ ↔ 𝐵 ≠ ∅))
126, 11mpbird 256 . 2 (𝜑 → (𝐹𝐵) ≠ ∅)
135simp3d 1142 . . . 4 (𝜑 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐)
14 simplll 771 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → 𝜑)
15 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → 𝑎𝑐)
168ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝐵 ⊆ 𝒫 𝐴)
17 simprr 769 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
1816, 17sseldd 3926 . . . . . . . . . . . . . 14 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝑐 ∈ 𝒫 𝐴)
1918elpwid 4549 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝑐𝐴)
2019adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → 𝑐𝐴)
21 vex 3434 . . . . . . . . . . . . 13 𝑎 ∈ V
22 vex 3434 . . . . . . . . . . . . 13 𝑐 ∈ V
23 sseq12 3952 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑎𝑣 = 𝑐) → (𝑢𝑣𝑎𝑐))
24 sseq1 3950 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑐 → (𝑣𝐴𝑐𝐴))
2524adantl 481 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑎𝑣 = 𝑐) → (𝑣𝐴𝑐𝐴))
2623, 25anbi12d 630 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑎𝑣 = 𝑐) → ((𝑢𝑣𝑣𝐴) ↔ (𝑎𝑐𝑐𝐴)))
2726anbi2d 628 . . . . . . . . . . . . . 14 ((𝑢 = 𝑎𝑣 = 𝑐) → ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) ↔ (𝜑 ∧ (𝑎𝑐𝑐𝐴))))
28 fveq2 6768 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → (𝐹𝑢) = (𝐹𝑎))
29 fveq2 6768 . . . . . . . . . . . . . . 15 (𝑣 = 𝑐 → (𝐹𝑣) = (𝐹𝑐))
30 sseq12 3952 . . . . . . . . . . . . . . 15 (((𝐹𝑢) = (𝐹𝑎) ∧ (𝐹𝑣) = (𝐹𝑐)) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑎) ⊆ (𝐹𝑐)))
3128, 29, 30syl2an 595 . . . . . . . . . . . . . 14 ((𝑢 = 𝑎𝑣 = 𝑐) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑎) ⊆ (𝐹𝑐)))
3227, 31imbi12d 344 . . . . . . . . . . . . 13 ((𝑢 = 𝑎𝑣 = 𝑐) → (((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣)) ↔ ((𝜑 ∧ (𝑎𝑐𝑐𝐴)) → (𝐹𝑎) ⊆ (𝐹𝑐))))
33 ipodrsima.m . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣))
3421, 22, 32, 33vtocl2 3498 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝑐𝑐𝐴)) → (𝐹𝑎) ⊆ (𝐹𝑐))
3514, 15, 20, 34syl12anc 833 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → (𝐹𝑎) ⊆ (𝐹𝑐))
3635ex 412 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → (𝑎𝑐 → (𝐹𝑎) ⊆ (𝐹𝑐)))
37 simplll 771 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → 𝜑)
38 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → 𝑏𝑐)
3919adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → 𝑐𝐴)
40 vex 3434 . . . . . . . . . . . . 13 𝑏 ∈ V
41 sseq12 3952 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑏𝑣 = 𝑐) → (𝑢𝑣𝑏𝑐))
4224adantl 481 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑏𝑣 = 𝑐) → (𝑣𝐴𝑐𝐴))
4341, 42anbi12d 630 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑏𝑣 = 𝑐) → ((𝑢𝑣𝑣𝐴) ↔ (𝑏𝑐𝑐𝐴)))
4443anbi2d 628 . . . . . . . . . . . . . 14 ((𝑢 = 𝑏𝑣 = 𝑐) → ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) ↔ (𝜑 ∧ (𝑏𝑐𝑐𝐴))))
45 fveq2 6768 . . . . . . . . . . . . . . 15 (𝑢 = 𝑏 → (𝐹𝑢) = (𝐹𝑏))
46 sseq12 3952 . . . . . . . . . . . . . . 15 (((𝐹𝑢) = (𝐹𝑏) ∧ (𝐹𝑣) = (𝐹𝑐)) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑏) ⊆ (𝐹𝑐)))
4745, 29, 46syl2an 595 . . . . . . . . . . . . . 14 ((𝑢 = 𝑏𝑣 = 𝑐) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑏) ⊆ (𝐹𝑐)))
4844, 47imbi12d 344 . . . . . . . . . . . . 13 ((𝑢 = 𝑏𝑣 = 𝑐) → (((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣)) ↔ ((𝜑 ∧ (𝑏𝑐𝑐𝐴)) → (𝐹𝑏) ⊆ (𝐹𝑐))))
4940, 22, 48, 33vtocl2 3498 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝑐𝑐𝐴)) → (𝐹𝑏) ⊆ (𝐹𝑐))
5037, 38, 39, 49syl12anc 833 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → (𝐹𝑏) ⊆ (𝐹𝑐))
5150ex 412 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → (𝑏𝑐 → (𝐹𝑏) ⊆ (𝐹𝑐)))
5236, 51anim12d 608 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → ((𝑎𝑐𝑏𝑐) → ((𝐹𝑎) ⊆ (𝐹𝑐) ∧ (𝐹𝑏) ⊆ (𝐹𝑐))))
53 unss 4122 . . . . . . . . 9 ((𝑎𝑐𝑏𝑐) ↔ (𝑎𝑏) ⊆ 𝑐)
54 unss 4122 . . . . . . . . 9 (((𝐹𝑎) ⊆ (𝐹𝑐) ∧ (𝐹𝑏) ⊆ (𝐹𝑐)) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
5552, 53, 543imtr3g 294 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → ((𝑎𝑏) ⊆ 𝑐 → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5655anassrs 467 . . . . . . 7 ((((𝜑𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) → ((𝑎𝑏) ⊆ 𝑐 → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5756reximdva 3204 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (∃𝑐𝐵 (𝑎𝑏) ⊆ 𝑐 → ∃𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5857ralimdva 3104 . . . . 5 ((𝜑𝑎𝐵) → (∀𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐 → ∀𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5958ralimdva 3104 . . . 4 (𝜑 → (∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
6013, 59mpd 15 . . 3 (𝜑 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
61 uneq1 4094 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥𝑦) = ((𝐹𝑎) ∪ 𝑦))
6261sseq1d 3956 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝑥𝑦) ⊆ 𝑧 ↔ ((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
6362rexbidv 3227 . . . . . . 7 (𝑥 = (𝐹𝑎) → (∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
6463ralbidv 3122 . . . . . 6 (𝑥 = (𝐹𝑎) → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
6564ralima 7108 . . . . 5 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → (∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
667, 8, 65syl2anc 583 . . . 4 (𝜑 → (∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
67 uneq2 4095 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) ∪ 𝑦) = ((𝐹𝑎) ∪ (𝐹𝑏)))
6867sseq1d 3956 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
6968rexbidv 3227 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
7069ralima 7108 . . . . . . 7 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
717, 8, 70syl2anc 583 . . . . . 6 (𝜑 → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
72 sseq2 3951 . . . . . . . . 9 (𝑧 = (𝐹𝑐) → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7372rexima 7107 . . . . . . . 8 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → (∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ∃𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
747, 8, 73syl2anc 583 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ∃𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7574ralbidv 3122 . . . . . 6 (𝜑 → (∀𝑏𝐵𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7671, 75bitrd 278 . . . . 5 (𝜑 → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7776ralbidv 3122 . . . 4 (𝜑 → (∀𝑎𝐵𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7866, 77bitrd 278 . . 3 (𝜑 → (∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7960, 78mpbird 256 . 2 (𝜑 → ∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧)
80 isipodrs 18236 . 2 ((toInc‘(𝐹𝐵)) ∈ Dirset ↔ ((𝐹𝐵) ∈ V ∧ (𝐹𝐵) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧))
812, 12, 79, 80syl3anbrc 1341 1 (𝜑 → (toInc‘(𝐹𝐵)) ∈ Dirset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wral 3065  wrex 3066  Vcvv 3430  cun 3889  wss 3891  c0 4261  𝒫 cpw 4538  cima 5591   Fn wfn 6425  cfv 6430  Dirsetcdrs 17993  toInccipo 18226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-struct 16829  df-slot 16864  df-ndx 16876  df-base 16894  df-tset 16962  df-ple 16963  df-ocomp 16964  df-proset 17994  df-drs 17995  df-poset 18012  df-ipo 18227
This theorem is referenced by:  isacs4lem  18243  isnacs3  40512
  Copyright terms: Public domain W3C validator