Step | Hyp | Ref
| Expression |
1 | | ipodrsima.a |
. . 3
⊢ (𝜑 → (𝐹 “ 𝐵) ∈ 𝑉) |
2 | | elex 3429 |
. . 3
⊢ ((𝐹 “ 𝐵) ∈ 𝑉 → (𝐹 “ 𝐵) ∈ V) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → (𝐹 “ 𝐵) ∈ V) |
4 | | ipodrsima.d |
. . . . 5
⊢ (𝜑 → (toInc‘𝐵) ∈
Dirset) |
5 | | isipodrs 17514 |
. . . . 5
⊢
((toInc‘𝐵)
∈ Dirset ↔ (𝐵
∈ V ∧ 𝐵 ≠
∅ ∧ ∀𝑎
∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎 ∪ 𝑏) ⊆ 𝑐)) |
6 | 4, 5 | sylib 210 |
. . . 4
⊢ (𝜑 → (𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎 ∪ 𝑏) ⊆ 𝑐)) |
7 | 6 | simp2d 1177 |
. . 3
⊢ (𝜑 → 𝐵 ≠ ∅) |
8 | | ipodrsima.f |
. . . . 5
⊢ (𝜑 → 𝐹 Fn 𝒫 𝐴) |
9 | | ipodrsima.s |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝒫 𝐴) |
10 | | fnimaeq0 6246 |
. . . . 5
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴) → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
11 | 8, 9, 10 | syl2anc 579 |
. . . 4
⊢ (𝜑 → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
12 | 11 | necon3bid 3043 |
. . 3
⊢ (𝜑 → ((𝐹 “ 𝐵) ≠ ∅ ↔ 𝐵 ≠ ∅)) |
13 | 7, 12 | mpbird 249 |
. 2
⊢ (𝜑 → (𝐹 “ 𝐵) ≠ ∅) |
14 | 6 | simp3d 1178 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎 ∪ 𝑏) ⊆ 𝑐) |
15 | | simplll 791 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑎 ⊆ 𝑐) → 𝜑) |
16 | | simpr 479 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑎 ⊆ 𝑐) → 𝑎 ⊆ 𝑐) |
17 | 9 | ad2antrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝐵 ⊆ 𝒫 𝐴) |
18 | | simprr 789 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑐 ∈ 𝐵) |
19 | 17, 18 | sseldd 3828 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑐 ∈ 𝒫 𝐴) |
20 | 19 | elpwid 4390 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑐 ⊆ 𝐴) |
21 | 20 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑎 ⊆ 𝑐) → 𝑐 ⊆ 𝐴) |
22 | | vex 3417 |
. . . . . . . . . . . . 13
⊢ 𝑎 ∈ V |
23 | | vex 3417 |
. . . . . . . . . . . . 13
⊢ 𝑐 ∈ V |
24 | | sseq12 3853 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑐) → (𝑢 ⊆ 𝑣 ↔ 𝑎 ⊆ 𝑐)) |
25 | | sseq1 3851 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑐 → (𝑣 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴)) |
26 | 25 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑐) → (𝑣 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴)) |
27 | 24, 26 | anbi12d 624 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑐) → ((𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴) ↔ (𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴))) |
28 | 27 | anbi2d 622 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑐) → ((𝜑 ∧ (𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴)) ↔ (𝜑 ∧ (𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴)))) |
29 | | fveq2 6433 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑎 → (𝐹‘𝑢) = (𝐹‘𝑎)) |
30 | | fveq2 6433 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑐 → (𝐹‘𝑣) = (𝐹‘𝑐)) |
31 | | sseq12 3853 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑢) = (𝐹‘𝑎) ∧ (𝐹‘𝑣) = (𝐹‘𝑐)) → ((𝐹‘𝑢) ⊆ (𝐹‘𝑣) ↔ (𝐹‘𝑎) ⊆ (𝐹‘𝑐))) |
32 | 29, 30, 31 | syl2an 589 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑐) → ((𝐹‘𝑢) ⊆ (𝐹‘𝑣) ↔ (𝐹‘𝑎) ⊆ (𝐹‘𝑐))) |
33 | 28, 32 | imbi12d 336 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑐) → (((𝜑 ∧ (𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴)) → (𝐹‘𝑢) ⊆ (𝐹‘𝑣)) ↔ ((𝜑 ∧ (𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴)) → (𝐹‘𝑎) ⊆ (𝐹‘𝑐)))) |
34 | | ipodrsima.m |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴)) → (𝐹‘𝑢) ⊆ (𝐹‘𝑣)) |
35 | 22, 23, 33, 34 | vtocl2 3477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴)) → (𝐹‘𝑎) ⊆ (𝐹‘𝑐)) |
36 | 15, 16, 21, 35 | syl12anc 870 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑎 ⊆ 𝑐) → (𝐹‘𝑎) ⊆ (𝐹‘𝑐)) |
37 | 36 | ex 403 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎 ⊆ 𝑐 → (𝐹‘𝑎) ⊆ (𝐹‘𝑐))) |
38 | | simplll 791 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑏 ⊆ 𝑐) → 𝜑) |
39 | | simpr 479 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑏 ⊆ 𝑐) → 𝑏 ⊆ 𝑐) |
40 | 20 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑏 ⊆ 𝑐) → 𝑐 ⊆ 𝐴) |
41 | | vex 3417 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ V |
42 | | sseq12 3853 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 = 𝑏 ∧ 𝑣 = 𝑐) → (𝑢 ⊆ 𝑣 ↔ 𝑏 ⊆ 𝑐)) |
43 | 25 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 = 𝑏 ∧ 𝑣 = 𝑐) → (𝑣 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴)) |
44 | 42, 43 | anbi12d 624 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 = 𝑏 ∧ 𝑣 = 𝑐) → ((𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴) ↔ (𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴))) |
45 | 44 | anbi2d 622 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑏 ∧ 𝑣 = 𝑐) → ((𝜑 ∧ (𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴)) ↔ (𝜑 ∧ (𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴)))) |
46 | | fveq2 6433 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑏 → (𝐹‘𝑢) = (𝐹‘𝑏)) |
47 | | sseq12 3853 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑢) = (𝐹‘𝑏) ∧ (𝐹‘𝑣) = (𝐹‘𝑐)) → ((𝐹‘𝑢) ⊆ (𝐹‘𝑣) ↔ (𝐹‘𝑏) ⊆ (𝐹‘𝑐))) |
48 | 46, 30, 47 | syl2an 589 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑏 ∧ 𝑣 = 𝑐) → ((𝐹‘𝑢) ⊆ (𝐹‘𝑣) ↔ (𝐹‘𝑏) ⊆ (𝐹‘𝑐))) |
49 | 45, 48 | imbi12d 336 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = 𝑏 ∧ 𝑣 = 𝑐) → (((𝜑 ∧ (𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴)) → (𝐹‘𝑢) ⊆ (𝐹‘𝑣)) ↔ ((𝜑 ∧ (𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴)) → (𝐹‘𝑏) ⊆ (𝐹‘𝑐)))) |
50 | 41, 23, 49, 34 | vtocl2 3477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴)) → (𝐹‘𝑏) ⊆ (𝐹‘𝑐)) |
51 | 38, 39, 40, 50 | syl12anc 870 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ 𝑏 ⊆ 𝑐) → (𝐹‘𝑏) ⊆ (𝐹‘𝑐)) |
52 | 51 | ex 403 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑏 ⊆ 𝑐 → (𝐹‘𝑏) ⊆ (𝐹‘𝑐))) |
53 | 37, 52 | anim12d 602 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎 ⊆ 𝑐 ∧ 𝑏 ⊆ 𝑐) → ((𝐹‘𝑎) ⊆ (𝐹‘𝑐) ∧ (𝐹‘𝑏) ⊆ (𝐹‘𝑐)))) |
54 | | unss 4014 |
. . . . . . . . 9
⊢ ((𝑎 ⊆ 𝑐 ∧ 𝑏 ⊆ 𝑐) ↔ (𝑎 ∪ 𝑏) ⊆ 𝑐) |
55 | | unss 4014 |
. . . . . . . . 9
⊢ (((𝐹‘𝑎) ⊆ (𝐹‘𝑐) ∧ (𝐹‘𝑏) ⊆ (𝐹‘𝑐)) ↔ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐)) |
56 | 53, 54, 55 | 3imtr3g 287 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎 ∪ 𝑏) ⊆ 𝑐 → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
57 | 56 | anassrs 461 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → ((𝑎 ∪ 𝑏) ⊆ 𝑐 → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
58 | 57 | reximdva 3225 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (∃𝑐 ∈ 𝐵 (𝑎 ∪ 𝑏) ⊆ 𝑐 → ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
59 | 58 | ralimdva 3171 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎 ∪ 𝑏) ⊆ 𝑐 → ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
60 | 59 | ralimdva 3171 |
. . . 4
⊢ (𝜑 → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎 ∪ 𝑏) ⊆ 𝑐 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
61 | 14, 60 | mpd 15 |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐)) |
62 | | uneq1 3987 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑎) → (𝑥 ∪ 𝑦) = ((𝐹‘𝑎) ∪ 𝑦)) |
63 | 62 | sseq1d 3857 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑎) → ((𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ ((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧)) |
64 | 63 | rexbidv 3262 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑎) → (∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧)) |
65 | 64 | ralbidv 3195 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑎) → (∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧)) |
66 | 65 | ralima 6754 |
. . . . 5
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑎 ∈ 𝐵 ∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧)) |
67 | 8, 9, 66 | syl2anc 579 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ (𝐹 “ 𝐵)∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑎 ∈ 𝐵 ∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧)) |
68 | | uneq2 3988 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑏) → ((𝐹‘𝑎) ∪ 𝑦) = ((𝐹‘𝑎) ∪ (𝐹‘𝑏))) |
69 | 68 | sseq1d 3857 |
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑏) → (((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧)) |
70 | 69 | rexbidv 3262 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑏) → (∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧)) |
71 | 70 | ralima 6754 |
. . . . . . 7
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴) → (∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏 ∈ 𝐵 ∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧)) |
72 | 8, 9, 71 | syl2anc 579 |
. . . . . 6
⊢ (𝜑 → (∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏 ∈ 𝐵 ∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧)) |
73 | | sseq2 3852 |
. . . . . . . . 9
⊢ (𝑧 = (𝐹‘𝑐) → (((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧 ↔ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
74 | 73 | rexima 6753 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴) → (∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧 ↔ ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
75 | 8, 9, 74 | syl2anc 579 |
. . . . . . 7
⊢ (𝜑 → (∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧 ↔ ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
76 | 75 | ralbidv 3195 |
. . . . . 6
⊢ (𝜑 → (∀𝑏 ∈ 𝐵 ∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑧 ↔ ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
77 | 72, 76 | bitrd 271 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
78 | 77 | ralbidv 3195 |
. . . 4
⊢ (𝜑 → (∀𝑎 ∈ 𝐵 ∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)((𝐹‘𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
79 | 67, 78 | bitrd 271 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ (𝐹 “ 𝐵)∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
80 | 61, 79 | mpbird 249 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (𝐹 “ 𝐵)∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
81 | | isipodrs 17514 |
. 2
⊢
((toInc‘(𝐹
“ 𝐵)) ∈ Dirset
↔ ((𝐹 “ 𝐵) ∈ V ∧ (𝐹 “ 𝐵) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹 “ 𝐵)∀𝑦 ∈ (𝐹 “ 𝐵)∃𝑧 ∈ (𝐹 “ 𝐵)(𝑥 ∪ 𝑦) ⊆ 𝑧)) |
82 | 3, 13, 80, 81 | syl3anbrc 1447 |
1
⊢ (𝜑 → (toInc‘(𝐹 “ 𝐵)) ∈ Dirset) |