MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipodrsima Structured version   Visualization version   GIF version

Theorem ipodrsima 18465
Description: The monotone image of a directed set. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypotheses
Ref Expression
ipodrsima.f (𝜑𝐹 Fn 𝒫 𝐴)
ipodrsima.m ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣))
ipodrsima.d (𝜑 → (toInc‘𝐵) ∈ Dirset)
ipodrsima.s (𝜑𝐵 ⊆ 𝒫 𝐴)
ipodrsima.a (𝜑 → (𝐹𝐵) ∈ 𝑉)
Assertion
Ref Expression
ipodrsima (𝜑 → (toInc‘(𝐹𝐵)) ∈ Dirset)
Distinct variable groups:   𝜑,𝑢,𝑣   𝑢,𝐴,𝑣   𝑢,𝐹,𝑣
Allowed substitution hints:   𝐵(𝑣,𝑢)   𝑉(𝑣,𝑢)

Proof of Theorem ipodrsima
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipodrsima.a . . 3 (𝜑 → (𝐹𝐵) ∈ 𝑉)
21elexd 3462 . 2 (𝜑 → (𝐹𝐵) ∈ V)
3 ipodrsima.d . . . . 5 (𝜑 → (toInc‘𝐵) ∈ Dirset)
4 isipodrs 18461 . . . . 5 ((toInc‘𝐵) ∈ Dirset ↔ (𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐))
53, 4sylib 218 . . . 4 (𝜑 → (𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐))
65simp2d 1143 . . 3 (𝜑𝐵 ≠ ∅)
7 ipodrsima.f . . . . 5 (𝜑𝐹 Fn 𝒫 𝐴)
8 ipodrsima.s . . . . 5 (𝜑𝐵 ⊆ 𝒫 𝐴)
9 fnimaeq0 6619 . . . . 5 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
107, 8, 9syl2anc 584 . . . 4 (𝜑 → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
1110necon3bid 2969 . . 3 (𝜑 → ((𝐹𝐵) ≠ ∅ ↔ 𝐵 ≠ ∅))
126, 11mpbird 257 . 2 (𝜑 → (𝐹𝐵) ≠ ∅)
135simp3d 1144 . . . 4 (𝜑 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐)
14 simplll 774 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → 𝜑)
15 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → 𝑎𝑐)
168ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝐵 ⊆ 𝒫 𝐴)
17 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
1816, 17sseldd 3938 . . . . . . . . . . . . . 14 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝑐 ∈ 𝒫 𝐴)
1918elpwid 4562 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → 𝑐𝐴)
2019adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → 𝑐𝐴)
21 vex 3442 . . . . . . . . . . . . 13 𝑎 ∈ V
22 vex 3442 . . . . . . . . . . . . 13 𝑐 ∈ V
23 sseq12 3965 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑎𝑣 = 𝑐) → (𝑢𝑣𝑎𝑐))
24 sseq1 3963 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑐 → (𝑣𝐴𝑐𝐴))
2524adantl 481 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑎𝑣 = 𝑐) → (𝑣𝐴𝑐𝐴))
2623, 25anbi12d 632 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑎𝑣 = 𝑐) → ((𝑢𝑣𝑣𝐴) ↔ (𝑎𝑐𝑐𝐴)))
2726anbi2d 630 . . . . . . . . . . . . . 14 ((𝑢 = 𝑎𝑣 = 𝑐) → ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) ↔ (𝜑 ∧ (𝑎𝑐𝑐𝐴))))
28 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → (𝐹𝑢) = (𝐹𝑎))
29 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑣 = 𝑐 → (𝐹𝑣) = (𝐹𝑐))
30 sseq12 3965 . . . . . . . . . . . . . . 15 (((𝐹𝑢) = (𝐹𝑎) ∧ (𝐹𝑣) = (𝐹𝑐)) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑎) ⊆ (𝐹𝑐)))
3128, 29, 30syl2an 596 . . . . . . . . . . . . . 14 ((𝑢 = 𝑎𝑣 = 𝑐) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑎) ⊆ (𝐹𝑐)))
3227, 31imbi12d 344 . . . . . . . . . . . . 13 ((𝑢 = 𝑎𝑣 = 𝑐) → (((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣)) ↔ ((𝜑 ∧ (𝑎𝑐𝑐𝐴)) → (𝐹𝑎) ⊆ (𝐹𝑐))))
33 ipodrsima.m . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣))
3421, 22, 32, 33vtocl2 3523 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝑐𝑐𝐴)) → (𝐹𝑎) ⊆ (𝐹𝑐))
3514, 15, 20, 34syl12anc 836 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑎𝑐) → (𝐹𝑎) ⊆ (𝐹𝑐))
3635ex 412 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → (𝑎𝑐 → (𝐹𝑎) ⊆ (𝐹𝑐)))
37 simplll 774 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → 𝜑)
38 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → 𝑏𝑐)
3919adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → 𝑐𝐴)
40 vex 3442 . . . . . . . . . . . . 13 𝑏 ∈ V
41 sseq12 3965 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑏𝑣 = 𝑐) → (𝑢𝑣𝑏𝑐))
4224adantl 481 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑏𝑣 = 𝑐) → (𝑣𝐴𝑐𝐴))
4341, 42anbi12d 632 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑏𝑣 = 𝑐) → ((𝑢𝑣𝑣𝐴) ↔ (𝑏𝑐𝑐𝐴)))
4443anbi2d 630 . . . . . . . . . . . . . 14 ((𝑢 = 𝑏𝑣 = 𝑐) → ((𝜑 ∧ (𝑢𝑣𝑣𝐴)) ↔ (𝜑 ∧ (𝑏𝑐𝑐𝐴))))
45 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑢 = 𝑏 → (𝐹𝑢) = (𝐹𝑏))
46 sseq12 3965 . . . . . . . . . . . . . . 15 (((𝐹𝑢) = (𝐹𝑏) ∧ (𝐹𝑣) = (𝐹𝑐)) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑏) ⊆ (𝐹𝑐)))
4745, 29, 46syl2an 596 . . . . . . . . . . . . . 14 ((𝑢 = 𝑏𝑣 = 𝑐) → ((𝐹𝑢) ⊆ (𝐹𝑣) ↔ (𝐹𝑏) ⊆ (𝐹𝑐)))
4844, 47imbi12d 344 . . . . . . . . . . . . 13 ((𝑢 = 𝑏𝑣 = 𝑐) → (((𝜑 ∧ (𝑢𝑣𝑣𝐴)) → (𝐹𝑢) ⊆ (𝐹𝑣)) ↔ ((𝜑 ∧ (𝑏𝑐𝑐𝐴)) → (𝐹𝑏) ⊆ (𝐹𝑐))))
4940, 22, 48, 33vtocl2 3523 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝑐𝑐𝐴)) → (𝐹𝑏) ⊆ (𝐹𝑐))
5037, 38, 39, 49syl12anc 836 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) ∧ 𝑏𝑐) → (𝐹𝑏) ⊆ (𝐹𝑐))
5150ex 412 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → (𝑏𝑐 → (𝐹𝑏) ⊆ (𝐹𝑐)))
5236, 51anim12d 609 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → ((𝑎𝑐𝑏𝑐) → ((𝐹𝑎) ⊆ (𝐹𝑐) ∧ (𝐹𝑏) ⊆ (𝐹𝑐))))
53 unss 4143 . . . . . . . . 9 ((𝑎𝑐𝑏𝑐) ↔ (𝑎𝑏) ⊆ 𝑐)
54 unss 4143 . . . . . . . . 9 (((𝐹𝑎) ⊆ (𝐹𝑐) ∧ (𝐹𝑏) ⊆ (𝐹𝑐)) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
5552, 53, 543imtr3g 295 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑏𝐵𝑐𝐵)) → ((𝑎𝑏) ⊆ 𝑐 → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5655anassrs 467 . . . . . . 7 ((((𝜑𝑎𝐵) ∧ 𝑏𝐵) ∧ 𝑐𝐵) → ((𝑎𝑏) ⊆ 𝑐 → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5756reximdva 3142 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐵) → (∃𝑐𝐵 (𝑎𝑏) ⊆ 𝑐 → ∃𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5857ralimdva 3141 . . . . 5 ((𝜑𝑎𝐵) → (∀𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐 → ∀𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
5958ralimdva 3141 . . . 4 (𝜑 → (∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎𝑏) ⊆ 𝑐 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
6013, 59mpd 15 . . 3 (𝜑 → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
61 uneq1 4114 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥𝑦) = ((𝐹𝑎) ∪ 𝑦))
6261sseq1d 3969 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝑥𝑦) ⊆ 𝑧 ↔ ((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
6362rexbidv 3153 . . . . . . 7 (𝑥 = (𝐹𝑎) → (∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
6463ralbidv 3152 . . . . . 6 (𝑥 = (𝐹𝑎) → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
6564ralima 7177 . . . . 5 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → (∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
667, 8, 65syl2anc 584 . . . 4 (𝜑 → (∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧))
67 uneq2 4115 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) ∪ 𝑦) = ((𝐹𝑎) ∪ (𝐹𝑏)))
6867sseq1d 3969 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
6968rexbidv 3153 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
7069ralima 7177 . . . . . . 7 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
717, 8, 70syl2anc 584 . . . . . 6 (𝜑 → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧))
72 sseq2 3964 . . . . . . . . 9 (𝑧 = (𝐹𝑐) → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7372rexima 7178 . . . . . . . 8 ((𝐹 Fn 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴) → (∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ∃𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
747, 8, 73syl2anc 584 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ∃𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7574ralbidv 3152 . . . . . 6 (𝜑 → (∀𝑏𝐵𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7671, 75bitrd 279 . . . . 5 (𝜑 → (∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7776ralbidv 3152 . . . 4 (𝜑 → (∀𝑎𝐵𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)((𝐹𝑎) ∪ 𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7866, 77bitrd 279 . . 3 (𝜑 → (∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧 ↔ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7960, 78mpbird 257 . 2 (𝜑 → ∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧)
80 isipodrs 18461 . 2 ((toInc‘(𝐹𝐵)) ∈ Dirset ↔ ((𝐹𝐵) ∈ V ∧ (𝐹𝐵) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹𝐵)∀𝑦 ∈ (𝐹𝐵)∃𝑧 ∈ (𝐹𝐵)(𝑥𝑦) ⊆ 𝑧))
812, 12, 79, 80syl3anbrc 1344 1 (𝜑 → (toInc‘(𝐹𝐵)) ∈ Dirset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  cun 3903  wss 3905  c0 4286  𝒫 cpw 4553  cima 5626   Fn wfn 6481  cfv 6486  Dirsetcdrs 18217  toInccipo 18451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-tset 17198  df-ple 17199  df-ocomp 17200  df-proset 18218  df-drs 18219  df-poset 18237  df-ipo 18452
This theorem is referenced by:  isacs4lem  18468  isnacs3  42683
  Copyright terms: Public domain W3C validator