Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caovord | Structured version Visualization version GIF version |
Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.) |
Ref | Expression |
---|---|
caovord.1 | ⊢ 𝐴 ∈ V |
caovord.2 | ⊢ 𝐵 ∈ V |
caovord.3 | ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
Ref | Expression |
---|---|
caovord | ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7220 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧𝐹𝐴) = (𝐶𝐹𝐴)) | |
2 | oveq1 7220 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧𝐹𝐵) = (𝐶𝐹𝐵)) | |
3 | 1, 2 | breq12d 5066 | . . 3 ⊢ (𝑧 = 𝐶 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵) ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
4 | 3 | bibi2d 346 | . 2 ⊢ (𝑧 = 𝐶 → ((𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)) ↔ (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))) |
5 | caovord.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | caovord.2 | . . 3 ⊢ 𝐵 ∈ V | |
7 | breq1 5056 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝑦)) | |
8 | oveq2 7221 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑧𝐹𝑥) = (𝑧𝐹𝐴)) | |
9 | 8 | breq1d 5063 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦))) |
10 | 7, 9 | bibi12d 349 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝑦 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)))) |
11 | breq2 5057 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴𝑅𝑦 ↔ 𝐴𝑅𝐵)) | |
12 | oveq2 7221 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑧𝐹𝑦) = (𝑧𝐹𝐵)) | |
13 | 12 | breq2d 5065 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))) |
14 | 11, 13 | bibi12d 349 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐴𝑅𝑦 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)))) |
15 | 10, 14 | sylan9bb 513 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)))) |
16 | 15 | imbi2d 344 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) ↔ (𝑧 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))))) |
17 | caovord.3 | . . 3 ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | |
18 | 5, 6, 16, 17 | vtocl2 3476 | . 2 ⊢ (𝑧 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))) |
19 | 4, 18 | vtoclga 3489 | 1 ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 class class class wbr 5053 (class class class)co 7213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 |
This theorem is referenced by: caovord2 7420 caovord3 7421 genpcl 10622 |
Copyright terms: Public domain | W3C validator |