| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caovord | Structured version Visualization version GIF version | ||
| Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.) |
| Ref | Expression |
|---|---|
| caovord.1 | ⊢ 𝐴 ∈ V |
| caovord.2 | ⊢ 𝐵 ∈ V |
| caovord.3 | ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
| Ref | Expression |
|---|---|
| caovord | ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7406 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧𝐹𝐴) = (𝐶𝐹𝐴)) | |
| 2 | oveq1 7406 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧𝐹𝐵) = (𝐶𝐹𝐵)) | |
| 3 | 1, 2 | breq12d 5129 | . . 3 ⊢ (𝑧 = 𝐶 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵) ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| 4 | 3 | bibi2d 342 | . 2 ⊢ (𝑧 = 𝐶 → ((𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)) ↔ (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))) |
| 5 | caovord.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 6 | caovord.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 7 | breq1 5119 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝑦)) | |
| 8 | oveq2 7407 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑧𝐹𝑥) = (𝑧𝐹𝐴)) | |
| 9 | 8 | breq1d 5126 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦))) |
| 10 | 7, 9 | bibi12d 345 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝑦 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)))) |
| 11 | breq2 5120 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴𝑅𝑦 ↔ 𝐴𝑅𝐵)) | |
| 12 | oveq2 7407 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑧𝐹𝑦) = (𝑧𝐹𝐵)) | |
| 13 | 12 | breq2d 5128 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))) |
| 14 | 11, 13 | bibi12d 345 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐴𝑅𝑦 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)))) |
| 15 | 10, 14 | sylan9bb 509 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)))) |
| 16 | 15 | imbi2d 340 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) ↔ (𝑧 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))))) |
| 17 | caovord.3 | . . 3 ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | |
| 18 | 5, 6, 16, 17 | vtocl2 3543 | . 2 ⊢ (𝑧 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))) |
| 19 | 4, 18 | vtoclga 3554 | 1 ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 class class class wbr 5116 (class class class)co 7399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-iota 6480 df-fv 6535 df-ov 7402 |
| This theorem is referenced by: caovord2 7613 caovord3 7614 genpcl 11014 |
| Copyright terms: Public domain | W3C validator |