| Step | Hyp | Ref
| Expression |
| 1 | | simp3 1138 |
. 2
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Po ran 𝐹) |
| 2 | | fvelrnb 6944 |
. . . . . 6
⊢ (𝐹 Fn ω → (𝑏 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ω (𝐹‘𝑑) = 𝑏)) |
| 3 | | fvelrnb 6944 |
. . . . . 6
⊢ (𝐹 Fn ω → (𝑐 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ω (𝐹‘𝑒) = 𝑐)) |
| 4 | 2, 3 | anbi12d 632 |
. . . . 5
⊢ (𝐹 Fn ω → ((𝑏 ∈ ran 𝐹 ∧ 𝑐 ∈ ran 𝐹) ↔ (∃𝑑 ∈ ω (𝐹‘𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹‘𝑒) = 𝑐))) |
| 5 | 4 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝑏 ∈ ran 𝐹 ∧ 𝑐 ∈ ran 𝐹) ↔ (∃𝑑 ∈ ω (𝐹‘𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹‘𝑒) = 𝑐))) |
| 6 | | reeanv 3217 |
. . . . 5
⊢
(∃𝑑 ∈
ω ∃𝑒 ∈
ω ((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) ↔ (∃𝑑 ∈ ω (𝐹‘𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹‘𝑒) = 𝑐)) |
| 7 | | nnord 7874 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ ω → Ord 𝑑) |
| 8 | | nnord 7874 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ ω → Ord 𝑒) |
| 9 | | ordtri2or2 6458 |
. . . . . . . . . . 11
⊢ ((Ord
𝑑 ∧ Ord 𝑒) → (𝑑 ⊆ 𝑒 ∨ 𝑒 ⊆ 𝑑)) |
| 10 | 7, 8, 9 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ ω ∧ 𝑒 ∈ ω) → (𝑑 ⊆ 𝑒 ∨ 𝑒 ⊆ 𝑑)) |
| 11 | 10 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑 ⊆ 𝑒 ∨ 𝑒 ⊆ 𝑑)) |
| 12 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑑 ∈ V |
| 13 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑒 ∈ V |
| 14 | | eleq1w 2818 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑑 → (𝑏 ∈ ω ↔ 𝑑 ∈ ω)) |
| 15 | | eleq1w 2818 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑒 → (𝑐 ∈ ω ↔ 𝑒 ∈ ω)) |
| 16 | 14, 15 | bi2anan9 638 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ↔ (𝑑 ∈ ω ∧ 𝑒 ∈ ω))) |
| 17 | 16 | anbi2d 630 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)))) |
| 18 | | sseq12 3991 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → (𝑏 ⊆ 𝑐 ↔ 𝑑 ⊆ 𝑒)) |
| 19 | | fveq2 6881 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑑 → (𝐹‘𝑏) = (𝐹‘𝑑)) |
| 20 | | fveq2 6881 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑒 → (𝐹‘𝑐) = (𝐹‘𝑒)) |
| 21 | 19, 20 | breqan12d 5140 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ↔ (𝐹‘𝑑)𝑅(𝐹‘𝑒))) |
| 22 | 19, 20 | eqeqan12d 2750 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → ((𝐹‘𝑏) = (𝐹‘𝑐) ↔ (𝐹‘𝑑) = (𝐹‘𝑒))) |
| 23 | 21, 22 | orbi12d 918 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → (((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)) ↔ ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)))) |
| 24 | 18, 23 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → ((𝑏 ⊆ 𝑐 → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐))) ↔ (𝑑 ⊆ 𝑒 → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒))))) |
| 25 | 17, 24 | imbi12d 344 |
. . . . . . . . . . 11
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → ((((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏 ⊆ 𝑐 → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)))) ↔ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑 ⊆ 𝑒 → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)))))) |
| 26 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑏 → (𝐹‘𝑑) = (𝐹‘𝑏)) |
| 27 | 26 | breq2d 5136 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑏 → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ↔ (𝐹‘𝑏)𝑅(𝐹‘𝑏))) |
| 28 | 26 | eqeq2d 2747 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑏 → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ (𝐹‘𝑏) = (𝐹‘𝑏))) |
| 29 | 27, 28 | orbi12d 918 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = 𝑏 → (((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑)) ↔ ((𝐹‘𝑏)𝑅(𝐹‘𝑏) ∨ (𝐹‘𝑏) = (𝐹‘𝑏)))) |
| 30 | 29 | imbi2d 340 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝑏 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑏) ∨ (𝐹‘𝑏) = (𝐹‘𝑏))))) |
| 31 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑒 → (𝐹‘𝑑) = (𝐹‘𝑒)) |
| 32 | 31 | breq2d 5136 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑒 → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ↔ (𝐹‘𝑏)𝑅(𝐹‘𝑒))) |
| 33 | 31 | eqeq2d 2747 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑒 → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ (𝐹‘𝑏) = (𝐹‘𝑒))) |
| 34 | 32, 33 | orbi12d 918 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = 𝑒 → (((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑)) ↔ ((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)))) |
| 35 | 34 | imbi2d 340 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝑒 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒))))) |
| 36 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = suc 𝑒 → (𝐹‘𝑑) = (𝐹‘suc 𝑒)) |
| 37 | 36 | breq2d 5136 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = suc 𝑒 → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ↔ (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒))) |
| 38 | 36 | eqeq2d 2747 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = suc 𝑒 → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ (𝐹‘𝑏) = (𝐹‘suc 𝑒))) |
| 39 | 37, 38 | orbi12d 918 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = suc 𝑒 → (((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑)) ↔ ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
| 40 | 39 | imbi2d 340 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = suc 𝑒 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
| 41 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑐 → (𝐹‘𝑑) = (𝐹‘𝑐)) |
| 42 | 41 | breq2d 5136 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑐 → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ↔ (𝐹‘𝑏)𝑅(𝐹‘𝑐))) |
| 43 | 41 | eqeq2d 2747 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑐 → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ (𝐹‘𝑏) = (𝐹‘𝑐))) |
| 44 | 42, 43 | orbi12d 918 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = 𝑐 → (((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑)) ↔ ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)))) |
| 45 | 44 | imbi2d 340 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝑐 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐))))) |
| 46 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹‘𝑏) = (𝐹‘𝑏) |
| 47 | 46 | olci 866 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑏)𝑅(𝐹‘𝑏) ∨ (𝐹‘𝑏) = (𝐹‘𝑏)) |
| 48 | 47 | 2a1i 12 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ ω → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑏) ∨ (𝐹‘𝑏) = (𝐹‘𝑏)))) |
| 49 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑒 → (𝐹‘𝑎) = (𝐹‘𝑒)) |
| 50 | | suceq 6424 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑒 → suc 𝑎 = suc 𝑒) |
| 51 | 50 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑒 → (𝐹‘suc 𝑎) = (𝐹‘suc 𝑒)) |
| 52 | 49, 51 | breq12d 5137 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑒 → ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ↔ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒))) |
| 53 | 49, 51 | eqeq12d 2752 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑒 → ((𝐹‘𝑎) = (𝐹‘suc 𝑎) ↔ (𝐹‘𝑒) = (𝐹‘suc 𝑒))) |
| 54 | 52, 53 | orbi12d 918 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑒 → (((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ↔ ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑒) = (𝐹‘suc 𝑒)))) |
| 55 | | simpr2 1196 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎))) |
| 56 | | simplll 774 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → 𝑒 ∈ ω) |
| 57 | 54, 55, 56 | rspcdva 3607 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑒) = (𝐹‘suc 𝑒))) |
| 58 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑅 Po ran 𝐹) |
| 59 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝐹 Fn ω) |
| 60 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑏 ∈ ω) |
| 61 | | fnfvelrn 7075 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹 Fn ω ∧ 𝑏 ∈ ω) → (𝐹‘𝑏) ∈ ran 𝐹) |
| 62 | 59, 60, 61 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹‘𝑏) ∈ ran 𝐹) |
| 63 | | simplll 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑒 ∈ ω) |
| 64 | | fnfvelrn 7075 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹 Fn ω ∧ 𝑒 ∈ ω) → (𝐹‘𝑒) ∈ ran 𝐹) |
| 65 | 59, 63, 64 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹‘𝑒) ∈ ran 𝐹) |
| 66 | | peano2 7891 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑒 ∈ ω → suc 𝑒 ∈
ω) |
| 67 | 66 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → suc 𝑒 ∈ ω) |
| 68 | | fnfvelrn 7075 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹 Fn ω ∧ suc 𝑒 ∈ ω) → (𝐹‘suc 𝑒) ∈ ran 𝐹) |
| 69 | 59, 67, 68 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹‘suc 𝑒) ∈ ran 𝐹) |
| 70 | | potr 5579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑅 Po ran 𝐹 ∧ ((𝐹‘𝑏) ∈ ran 𝐹 ∧ (𝐹‘𝑒) ∈ ran 𝐹 ∧ (𝐹‘suc 𝑒) ∈ ran 𝐹)) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∧ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒)) → (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒))) |
| 71 | 58, 62, 65, 69, 70 | syl13anc 1374 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∧ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒)) → (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒))) |
| 72 | 71 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑒 ∈
ω ∧ 𝑏 ∈
ω) ∧ 𝑏 ⊆
𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∧ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒))) → (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒)) |
| 73 | 72 | ancom2s 650 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑒 ∈
ω ∧ 𝑏 ∈
ω) ∧ 𝑏 ⊆
𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) ∧ (𝐹‘𝑏)𝑅(𝐹‘𝑒))) → (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒)) |
| 74 | 73 | orcd 873 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑒 ∈
ω ∧ 𝑏 ∈
ω) ∧ 𝑏 ⊆
𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) ∧ (𝐹‘𝑏)𝑅(𝐹‘𝑒))) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))) |
| 75 | 74 | expr 456 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑒 ∈
ω ∧ 𝑏 ∈
ω) ∧ 𝑏 ⊆
𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
| 76 | | breq1 5127 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹‘𝑏) = (𝐹‘𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ↔ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒))) |
| 77 | 76 | biimprcd 250 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) → ((𝐹‘𝑏) = (𝐹‘𝑒) → (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒))) |
| 78 | | orc 867 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))) |
| 79 | 77, 78 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) → ((𝐹‘𝑏) = (𝐹‘𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
| 80 | 79 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑒 ∈
ω ∧ 𝑏 ∈
ω) ∧ 𝑏 ⊆
𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒)) → ((𝐹‘𝑏) = (𝐹‘𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
| 81 | 75, 80 | jaod 859 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑒 ∈
ω ∧ 𝑏 ∈
ω) ∧ 𝑏 ⊆
𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒)) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
| 82 | 81 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
| 83 | | breq2 5128 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑒) = (𝐹‘suc 𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘𝑒) ↔ (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒))) |
| 84 | | eqeq2 2748 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑒) = (𝐹‘suc 𝑒) → ((𝐹‘𝑏) = (𝐹‘𝑒) ↔ (𝐹‘𝑏) = (𝐹‘suc 𝑒))) |
| 85 | 83, 84 | orbi12d 918 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑒) = (𝐹‘suc 𝑒) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) ↔ ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
| 86 | 85 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑒) = (𝐹‘suc 𝑒) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
| 87 | 86 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → ((𝐹‘𝑒) = (𝐹‘suc 𝑒) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
| 88 | 82, 87 | jaod 859 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑒) = (𝐹‘suc 𝑒)) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
| 89 | 88 | 3adantr2 1171 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → (((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑒) = (𝐹‘suc 𝑒)) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
| 90 | 57, 89 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
| 91 | 90 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
| 92 | 91 | a2d 29 |
. . . . . . . . . . . . . . 15
⊢ (((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒))) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
| 93 | 30, 35, 40, 45, 48, 92 | findsg 7898 |
. . . . . . . . . . . . . 14
⊢ (((𝑐 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑐) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)))) |
| 94 | 93 | ancom1s 653 |
. . . . . . . . . . . . 13
⊢ (((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ∧ 𝑏 ⊆ 𝑐) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)))) |
| 95 | 94 | impcom 407 |
. . . . . . . . . . . 12
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ∧ 𝑏 ⊆ 𝑐)) → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐))) |
| 96 | 95 | expr 456 |
. . . . . . . . . . 11
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏 ⊆ 𝑐 → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)))) |
| 97 | 12, 13, 25, 96 | vtocl2 3550 |
. . . . . . . . . 10
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑 ⊆ 𝑒 → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)))) |
| 98 | | eleq1w 2818 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑒 → (𝑏 ∈ ω ↔ 𝑒 ∈ ω)) |
| 99 | | eleq1w 2818 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑑 → (𝑐 ∈ ω ↔ 𝑑 ∈ ω)) |
| 100 | 98, 99 | bi2anan9 638 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ↔ (𝑒 ∈ ω ∧ 𝑑 ∈ ω))) |
| 101 | 100 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)))) |
| 102 | | sseq12 3991 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → (𝑏 ⊆ 𝑐 ↔ 𝑒 ⊆ 𝑑)) |
| 103 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑒 → (𝐹‘𝑏) = (𝐹‘𝑒)) |
| 104 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑑 → (𝐹‘𝑐) = (𝐹‘𝑑)) |
| 105 | 103, 104 | breqan12d 5140 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ↔ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
| 106 | 103, 104 | eqeqan12d 2750 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → ((𝐹‘𝑏) = (𝐹‘𝑐) ↔ (𝐹‘𝑒) = (𝐹‘𝑑))) |
| 107 | 105, 106 | orbi12d 918 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → (((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)) ↔ ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑)))) |
| 108 | 102, 107 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → ((𝑏 ⊆ 𝑐 → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐))) ↔ (𝑒 ⊆ 𝑑 → ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑))))) |
| 109 | 101, 108 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → ((((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏 ⊆ 𝑐 → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)))) ↔ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)) → (𝑒 ⊆ 𝑑 → ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑)))))) |
| 110 | 13, 12, 109, 96 | vtocl2 3550 |
. . . . . . . . . . 11
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)) → (𝑒 ⊆ 𝑑 → ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑)))) |
| 111 | 110 | ancom2s 650 |
. . . . . . . . . 10
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑒 ⊆ 𝑑 → ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑)))) |
| 112 | 97, 111 | orim12d 966 |
. . . . . . . . 9
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → ((𝑑 ⊆ 𝑒 ∨ 𝑒 ⊆ 𝑑) → (((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)) ∨ ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑))))) |
| 113 | 11, 112 | mpd 15 |
. . . . . . . 8
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)) ∨ ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑)))) |
| 114 | | 3mix1 1331 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑑)𝑅(𝐹‘𝑒) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
| 115 | | 3mix2 1332 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑑) = (𝐹‘𝑒) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
| 116 | 114, 115 | jaoi 857 |
. . . . . . . . 9
⊢ (((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
| 117 | | 3mix3 1333 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑒)𝑅(𝐹‘𝑑) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
| 118 | 115 | eqcoms 2744 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑒) = (𝐹‘𝑑) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
| 119 | 117, 118 | jaoi 857 |
. . . . . . . . 9
⊢ (((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑)) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
| 120 | 116, 119 | jaoi 857 |
. . . . . . . 8
⊢ ((((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)) ∨ ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑))) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
| 121 | 113, 120 | syl 17 |
. . . . . . 7
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
| 122 | | breq12 5129 |
. . . . . . . 8
⊢ (((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ↔ 𝑏𝑅𝑐)) |
| 123 | | eqeq12 2753 |
. . . . . . . 8
⊢ (((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) → ((𝐹‘𝑑) = (𝐹‘𝑒) ↔ 𝑏 = 𝑐)) |
| 124 | | breq12 5129 |
. . . . . . . . 9
⊢ (((𝐹‘𝑒) = 𝑐 ∧ (𝐹‘𝑑) = 𝑏) → ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ↔ 𝑐𝑅𝑏)) |
| 125 | 124 | ancoms 458 |
. . . . . . . 8
⊢ (((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) → ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ↔ 𝑐𝑅𝑏)) |
| 126 | 122, 123,
125 | 3orbi123d 1437 |
. . . . . . 7
⊢ (((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) → (((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑)) ↔ (𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏))) |
| 127 | 121, 126 | syl5ibcom 245 |
. . . . . 6
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) → (𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏))) |
| 128 | 127 | rexlimdvva 3202 |
. . . . 5
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → (∃𝑑 ∈ ω ∃𝑒 ∈ ω ((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) → (𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏))) |
| 129 | 6, 128 | biimtrrid 243 |
. . . 4
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((∃𝑑 ∈ ω (𝐹‘𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹‘𝑒) = 𝑐) → (𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏))) |
| 130 | 5, 129 | sylbid 240 |
. . 3
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝑏 ∈ ran 𝐹 ∧ 𝑐 ∈ ran 𝐹) → (𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏))) |
| 131 | 130 | ralrimivv 3186 |
. 2
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ∀𝑏 ∈ ran 𝐹∀𝑐 ∈ ran 𝐹(𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏)) |
| 132 | | df-so 5567 |
. 2
⊢ (𝑅 Or ran 𝐹 ↔ (𝑅 Po ran 𝐹 ∧ ∀𝑏 ∈ ran 𝐹∀𝑐 ∈ ran 𝐹(𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏))) |
| 133 | 1, 131, 132 | sylanbrc 583 |
1
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Or ran 𝐹) |