MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sornom Structured version   Visualization version   GIF version

Theorem sornom 9964
Description: The range of a single-step monotone function from ω into a partially ordered set is a chain. (Contributed by Stefan O'Rear, 3-Nov-2014.)
Assertion
Ref Expression
sornom ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Or ran 𝐹)
Distinct variable groups:   𝐹,𝑎   𝑅,𝑎

Proof of Theorem sornom
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1136 . 2 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Po ran 𝐹)
2 fvelrnb 6812 . . . . . 6 (𝐹 Fn ω → (𝑏 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ω (𝐹𝑑) = 𝑏))
3 fvelrnb 6812 . . . . . 6 (𝐹 Fn ω → (𝑐 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐))
42, 3anbi12d 630 . . . . 5 (𝐹 Fn ω → ((𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹) ↔ (∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐)))
543ad2ant1 1131 . . . 4 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹) ↔ (∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐)))
6 reeanv 3292 . . . . 5 (∃𝑑 ∈ ω ∃𝑒 ∈ ω ((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) ↔ (∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐))
7 nnord 7695 . . . . . . . . . . 11 (𝑑 ∈ ω → Ord 𝑑)
8 nnord 7695 . . . . . . . . . . 11 (𝑒 ∈ ω → Ord 𝑒)
9 ordtri2or2 6347 . . . . . . . . . . 11 ((Ord 𝑑 ∧ Ord 𝑒) → (𝑑𝑒𝑒𝑑))
107, 8, 9syl2an 595 . . . . . . . . . 10 ((𝑑 ∈ ω ∧ 𝑒 ∈ ω) → (𝑑𝑒𝑒𝑑))
1110adantl 481 . . . . . . . . 9 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑𝑒𝑒𝑑))
12 vex 3426 . . . . . . . . . . 11 𝑑 ∈ V
13 vex 3426 . . . . . . . . . . 11 𝑒 ∈ V
14 eleq1w 2821 . . . . . . . . . . . . . 14 (𝑏 = 𝑑 → (𝑏 ∈ ω ↔ 𝑑 ∈ ω))
15 eleq1w 2821 . . . . . . . . . . . . . 14 (𝑐 = 𝑒 → (𝑐 ∈ ω ↔ 𝑒 ∈ ω))
1614, 15bi2anan9 635 . . . . . . . . . . . . 13 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ↔ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)))
1716anbi2d 628 . . . . . . . . . . . 12 ((𝑏 = 𝑑𝑐 = 𝑒) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω))))
18 sseq12 3944 . . . . . . . . . . . . 13 ((𝑏 = 𝑑𝑐 = 𝑒) → (𝑏𝑐𝑑𝑒))
19 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑏 = 𝑑 → (𝐹𝑏) = (𝐹𝑑))
20 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑐 = 𝑒 → (𝐹𝑐) = (𝐹𝑒))
2119, 20breqan12d 5086 . . . . . . . . . . . . . 14 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝐹𝑏)𝑅(𝐹𝑐) ↔ (𝐹𝑑)𝑅(𝐹𝑒)))
2219, 20eqeqan12d 2752 . . . . . . . . . . . . . 14 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝐹𝑏) = (𝐹𝑐) ↔ (𝐹𝑑) = (𝐹𝑒)))
2321, 22orbi12d 915 . . . . . . . . . . . . 13 ((𝑏 = 𝑑𝑐 = 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)) ↔ ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒))))
2418, 23imbi12d 344 . . . . . . . . . . . 12 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))) ↔ (𝑑𝑒 → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)))))
2517, 24imbi12d 344 . . . . . . . . . . 11 ((𝑏 = 𝑑𝑐 = 𝑒) → ((((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))) ↔ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑𝑒 → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒))))))
26 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑏 → (𝐹𝑑) = (𝐹𝑏))
2726breq2d 5082 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑏 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹𝑏)))
2826eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑏 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹𝑏)))
2927, 28orbi12d 915 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑏 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏))))
3029imbi2d 340 . . . . . . . . . . . . . . 15 (𝑑 = 𝑏 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏)))))
31 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑒 → (𝐹𝑑) = (𝐹𝑒))
3231breq2d 5082 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑒 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹𝑒)))
3331eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑒 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹𝑒)))
3432, 33orbi12d 915 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒))))
3534imbi2d 340 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)))))
36 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑑 = suc 𝑒 → (𝐹𝑑) = (𝐹‘suc 𝑒))
3736breq2d 5082 . . . . . . . . . . . . . . . . 17 (𝑑 = suc 𝑒 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
3836eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑑 = suc 𝑒 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹‘suc 𝑒)))
3937, 38orbi12d 915 . . . . . . . . . . . . . . . 16 (𝑑 = suc 𝑒 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
4039imbi2d 340 . . . . . . . . . . . . . . 15 (𝑑 = suc 𝑒 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
41 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑐 → (𝐹𝑑) = (𝐹𝑐))
4241breq2d 5082 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑐 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹𝑐)))
4341eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑐 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹𝑐)))
4442, 43orbi12d 915 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑐 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
4544imbi2d 340 . . . . . . . . . . . . . . 15 (𝑑 = 𝑐 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))))
46 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝐹𝑏) = (𝐹𝑏)
4746olci 862 . . . . . . . . . . . . . . . 16 ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏))
48472a1i 12 . . . . . . . . . . . . . . 15 (𝑏 ∈ ω → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏))))
49 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑒 → (𝐹𝑎) = (𝐹𝑒))
50 suceq 6316 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑒 → suc 𝑎 = suc 𝑒)
5150fveq2d 6760 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑒 → (𝐹‘suc 𝑎) = (𝐹‘suc 𝑒))
5249, 51breq12d 5083 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑒 → ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ↔ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)))
5349, 51eqeq12d 2754 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑒 → ((𝐹𝑎) = (𝐹‘suc 𝑎) ↔ (𝐹𝑒) = (𝐹‘suc 𝑒)))
5452, 53orbi12d 915 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑒 → (((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ↔ ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒))))
55 simpr2 1193 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)))
56 simplll 771 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → 𝑒 ∈ ω)
5754, 55, 56rspcdva 3554 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒)))
58 simprr 769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑅 Po ran 𝐹)
59 simprl 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝐹 Fn ω)
60 simpllr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑏 ∈ ω)
61 fnfvelrn 6940 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn ω ∧ 𝑏 ∈ ω) → (𝐹𝑏) ∈ ran 𝐹)
6259, 60, 61syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹𝑏) ∈ ran 𝐹)
63 simplll 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑒 ∈ ω)
64 fnfvelrn 6940 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn ω ∧ 𝑒 ∈ ω) → (𝐹𝑒) ∈ ran 𝐹)
6559, 63, 64syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹𝑒) ∈ ran 𝐹)
66 peano2 7711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑒 ∈ ω → suc 𝑒 ∈ ω)
6766ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → suc 𝑒 ∈ ω)
68 fnfvelrn 6940 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn ω ∧ suc 𝑒 ∈ ω) → (𝐹‘suc 𝑒) ∈ ran 𝐹)
6959, 67, 68syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹‘suc 𝑒) ∈ ran 𝐹)
70 potr 5507 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 Po ran 𝐹 ∧ ((𝐹𝑏) ∈ ran 𝐹 ∧ (𝐹𝑒) ∈ ran 𝐹 ∧ (𝐹‘suc 𝑒) ∈ ran 𝐹)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
7158, 62, 65, 69, 70syl13anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
7271imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹𝑏)𝑅(𝐹𝑒) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒))) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒))
7372ancom2s 646 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∧ (𝐹𝑏)𝑅(𝐹𝑒))) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒))
7473orcd 869 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∧ (𝐹𝑏)𝑅(𝐹𝑒))) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))
7574expr 456 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → ((𝐹𝑏)𝑅(𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
76 breq1 5073 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑏) = (𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ↔ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)))
7776biimprcd 249 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) → ((𝐹𝑏) = (𝐹𝑒) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
78 orc 863 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))
7977, 78syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) → ((𝐹𝑏) = (𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8079adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → ((𝐹𝑏) = (𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8175, 80jaod 855 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8281ex 412 . . . . . . . . . . . . . . . . . . . 20 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
83 breq2 5074 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑒) = (𝐹‘suc 𝑒) → ((𝐹𝑏)𝑅(𝐹𝑒) ↔ (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
84 eqeq2 2750 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑒) = (𝐹‘suc 𝑒) → ((𝐹𝑏) = (𝐹𝑒) ↔ (𝐹𝑏) = (𝐹‘suc 𝑒)))
8583, 84orbi12d 915 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑒) = (𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) ↔ ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8685biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑒) = (𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8786a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → ((𝐹𝑒) = (𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
8882, 87jaod 855 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
89883adantr2 1168 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
9057, 89mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
9190ex 412 . . . . . . . . . . . . . . . 16 (((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
9291a2d 29 . . . . . . . . . . . . . . 15 (((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒))) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
9330, 35, 40, 45, 48, 92findsg 7720 . . . . . . . . . . . . . 14 (((𝑐 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑐) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
9493ancom1s 649 . . . . . . . . . . . . 13 (((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ∧ 𝑏𝑐) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
9594impcom 407 . . . . . . . . . . . 12 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ∧ 𝑏𝑐)) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))
9695expr 456 . . . . . . . . . . 11 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
9712, 13, 25, 96vtocl2 3490 . . . . . . . . . 10 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑𝑒 → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒))))
98 eleq1w 2821 . . . . . . . . . . . . . . 15 (𝑏 = 𝑒 → (𝑏 ∈ ω ↔ 𝑒 ∈ ω))
99 eleq1w 2821 . . . . . . . . . . . . . . 15 (𝑐 = 𝑑 → (𝑐 ∈ ω ↔ 𝑑 ∈ ω))
10098, 99bi2anan9 635 . . . . . . . . . . . . . 14 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ↔ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)))
101100anbi2d 628 . . . . . . . . . . . . 13 ((𝑏 = 𝑒𝑐 = 𝑑) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω))))
102 sseq12 3944 . . . . . . . . . . . . . 14 ((𝑏 = 𝑒𝑐 = 𝑑) → (𝑏𝑐𝑒𝑑))
103 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑒 → (𝐹𝑏) = (𝐹𝑒))
104 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑑 → (𝐹𝑐) = (𝐹𝑑))
105103, 104breqan12d 5086 . . . . . . . . . . . . . . 15 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝐹𝑏)𝑅(𝐹𝑐) ↔ (𝐹𝑒)𝑅(𝐹𝑑)))
106103, 104eqeqan12d 2752 . . . . . . . . . . . . . . 15 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝐹𝑏) = (𝐹𝑐) ↔ (𝐹𝑒) = (𝐹𝑑)))
107105, 106orbi12d 915 . . . . . . . . . . . . . 14 ((𝑏 = 𝑒𝑐 = 𝑑) → (((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)) ↔ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
108102, 107imbi12d 344 . . . . . . . . . . . . 13 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))) ↔ (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑)))))
109101, 108imbi12d 344 . . . . . . . . . . . 12 ((𝑏 = 𝑒𝑐 = 𝑑) → ((((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))) ↔ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)) → (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))))
11013, 12, 109, 96vtocl2 3490 . . . . . . . . . . 11 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)) → (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
111110ancom2s 646 . . . . . . . . . 10 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
11297, 111orim12d 961 . . . . . . . . 9 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → ((𝑑𝑒𝑒𝑑) → (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) ∨ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑)))))
11311, 112mpd 15 . . . . . . . 8 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) ∨ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
114 3mix1 1328 . . . . . . . . . 10 ((𝐹𝑑)𝑅(𝐹𝑒) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
115 3mix2 1329 . . . . . . . . . 10 ((𝐹𝑑) = (𝐹𝑒) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
116114, 115jaoi 853 . . . . . . . . 9 (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
117 3mix3 1330 . . . . . . . . . 10 ((𝐹𝑒)𝑅(𝐹𝑑) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
118115eqcoms 2746 . . . . . . . . . 10 ((𝐹𝑒) = (𝐹𝑑) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
119117, 118jaoi 853 . . . . . . . . 9 (((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑)) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
120116, 119jaoi 853 . . . . . . . 8 ((((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) ∨ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
121113, 120syl 17 . . . . . . 7 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
122 breq12 5075 . . . . . . . 8 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → ((𝐹𝑑)𝑅(𝐹𝑒) ↔ 𝑏𝑅𝑐))
123 eqeq12 2755 . . . . . . . 8 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → ((𝐹𝑑) = (𝐹𝑒) ↔ 𝑏 = 𝑐))
124 breq12 5075 . . . . . . . . 9 (((𝐹𝑒) = 𝑐 ∧ (𝐹𝑑) = 𝑏) → ((𝐹𝑒)𝑅(𝐹𝑑) ↔ 𝑐𝑅𝑏))
125124ancoms 458 . . . . . . . 8 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → ((𝐹𝑒)𝑅(𝐹𝑑) ↔ 𝑐𝑅𝑏))
126122, 123, 1253orbi123d 1433 . . . . . . 7 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)) ↔ (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
127121, 126syl5ibcom 244 . . . . . 6 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
128127rexlimdvva 3222 . . . . 5 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → (∃𝑑 ∈ ω ∃𝑒 ∈ ω ((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
1296, 128syl5bir 242 . . . 4 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
1305, 129sylbid 239 . . 3 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
131130ralrimivv 3113 . 2 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ∀𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹(𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏))
132 df-so 5495 . 2 (𝑅 Or ran 𝐹 ↔ (𝑅 Po ran 𝐹 ∧ ∀𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹(𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
1331, 131, 132sylanbrc 582 1 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Or ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070   Po wpo 5492   Or wor 5493  ran crn 5581  Ord word 6250  suc csuc 6253   Fn wfn 6413  cfv 6418  ωcom 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-om 7688
This theorem is referenced by:  fin23lem40  10038
  Copyright terms: Public domain W3C validator