MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sornom Structured version   Visualization version   GIF version

Theorem sornom 10272
Description: The range of a single-step monotone function from ω into a partially ordered set is a chain. (Contributed by Stefan O'Rear, 3-Nov-2014.)
Assertion
Ref Expression
sornom ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Or ran 𝐹)
Distinct variable groups:   𝐹,𝑎   𝑅,𝑎

Proof of Theorem sornom
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1139 . 2 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Po ran 𝐹)
2 fvelrnb 6953 . . . . . 6 (𝐹 Fn ω → (𝑏 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ω (𝐹𝑑) = 𝑏))
3 fvelrnb 6953 . . . . . 6 (𝐹 Fn ω → (𝑐 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐))
42, 3anbi12d 632 . . . . 5 (𝐹 Fn ω → ((𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹) ↔ (∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐)))
543ad2ant1 1134 . . . 4 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹) ↔ (∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐)))
6 reeanv 3227 . . . . 5 (∃𝑑 ∈ ω ∃𝑒 ∈ ω ((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) ↔ (∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐))
7 nnord 7863 . . . . . . . . . . 11 (𝑑 ∈ ω → Ord 𝑑)
8 nnord 7863 . . . . . . . . . . 11 (𝑒 ∈ ω → Ord 𝑒)
9 ordtri2or2 6464 . . . . . . . . . . 11 ((Ord 𝑑 ∧ Ord 𝑒) → (𝑑𝑒𝑒𝑑))
107, 8, 9syl2an 597 . . . . . . . . . 10 ((𝑑 ∈ ω ∧ 𝑒 ∈ ω) → (𝑑𝑒𝑒𝑑))
1110adantl 483 . . . . . . . . 9 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑𝑒𝑒𝑑))
12 vex 3479 . . . . . . . . . . 11 𝑑 ∈ V
13 vex 3479 . . . . . . . . . . 11 𝑒 ∈ V
14 eleq1w 2817 . . . . . . . . . . . . . 14 (𝑏 = 𝑑 → (𝑏 ∈ ω ↔ 𝑑 ∈ ω))
15 eleq1w 2817 . . . . . . . . . . . . . 14 (𝑐 = 𝑒 → (𝑐 ∈ ω ↔ 𝑒 ∈ ω))
1614, 15bi2anan9 638 . . . . . . . . . . . . 13 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ↔ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)))
1716anbi2d 630 . . . . . . . . . . . 12 ((𝑏 = 𝑑𝑐 = 𝑒) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω))))
18 sseq12 4010 . . . . . . . . . . . . 13 ((𝑏 = 𝑑𝑐 = 𝑒) → (𝑏𝑐𝑑𝑒))
19 fveq2 6892 . . . . . . . . . . . . . . 15 (𝑏 = 𝑑 → (𝐹𝑏) = (𝐹𝑑))
20 fveq2 6892 . . . . . . . . . . . . . . 15 (𝑐 = 𝑒 → (𝐹𝑐) = (𝐹𝑒))
2119, 20breqan12d 5165 . . . . . . . . . . . . . 14 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝐹𝑏)𝑅(𝐹𝑐) ↔ (𝐹𝑑)𝑅(𝐹𝑒)))
2219, 20eqeqan12d 2747 . . . . . . . . . . . . . 14 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝐹𝑏) = (𝐹𝑐) ↔ (𝐹𝑑) = (𝐹𝑒)))
2321, 22orbi12d 918 . . . . . . . . . . . . 13 ((𝑏 = 𝑑𝑐 = 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)) ↔ ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒))))
2418, 23imbi12d 345 . . . . . . . . . . . 12 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))) ↔ (𝑑𝑒 → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)))))
2517, 24imbi12d 345 . . . . . . . . . . 11 ((𝑏 = 𝑑𝑐 = 𝑒) → ((((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))) ↔ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑𝑒 → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒))))))
26 fveq2 6892 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑏 → (𝐹𝑑) = (𝐹𝑏))
2726breq2d 5161 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑏 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹𝑏)))
2826eqeq2d 2744 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑏 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹𝑏)))
2927, 28orbi12d 918 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑏 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏))))
3029imbi2d 341 . . . . . . . . . . . . . . 15 (𝑑 = 𝑏 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏)))))
31 fveq2 6892 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑒 → (𝐹𝑑) = (𝐹𝑒))
3231breq2d 5161 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑒 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹𝑒)))
3331eqeq2d 2744 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑒 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹𝑒)))
3432, 33orbi12d 918 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒))))
3534imbi2d 341 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)))))
36 fveq2 6892 . . . . . . . . . . . . . . . . . 18 (𝑑 = suc 𝑒 → (𝐹𝑑) = (𝐹‘suc 𝑒))
3736breq2d 5161 . . . . . . . . . . . . . . . . 17 (𝑑 = suc 𝑒 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
3836eqeq2d 2744 . . . . . . . . . . . . . . . . 17 (𝑑 = suc 𝑒 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹‘suc 𝑒)))
3937, 38orbi12d 918 . . . . . . . . . . . . . . . 16 (𝑑 = suc 𝑒 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
4039imbi2d 341 . . . . . . . . . . . . . . 15 (𝑑 = suc 𝑒 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
41 fveq2 6892 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑐 → (𝐹𝑑) = (𝐹𝑐))
4241breq2d 5161 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑐 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹𝑐)))
4341eqeq2d 2744 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑐 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹𝑐)))
4442, 43orbi12d 918 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑐 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
4544imbi2d 341 . . . . . . . . . . . . . . 15 (𝑑 = 𝑐 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))))
46 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝐹𝑏) = (𝐹𝑏)
4746olci 865 . . . . . . . . . . . . . . . 16 ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏))
48472a1i 12 . . . . . . . . . . . . . . 15 (𝑏 ∈ ω → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏))))
49 fveq2 6892 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑒 → (𝐹𝑎) = (𝐹𝑒))
50 suceq 6431 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑒 → suc 𝑎 = suc 𝑒)
5150fveq2d 6896 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑒 → (𝐹‘suc 𝑎) = (𝐹‘suc 𝑒))
5249, 51breq12d 5162 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑒 → ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ↔ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)))
5349, 51eqeq12d 2749 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑒 → ((𝐹𝑎) = (𝐹‘suc 𝑎) ↔ (𝐹𝑒) = (𝐹‘suc 𝑒)))
5452, 53orbi12d 918 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑒 → (((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ↔ ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒))))
55 simpr2 1196 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)))
56 simplll 774 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → 𝑒 ∈ ω)
5754, 55, 56rspcdva 3614 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒)))
58 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑅 Po ran 𝐹)
59 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝐹 Fn ω)
60 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑏 ∈ ω)
61 fnfvelrn 7083 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn ω ∧ 𝑏 ∈ ω) → (𝐹𝑏) ∈ ran 𝐹)
6259, 60, 61syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹𝑏) ∈ ran 𝐹)
63 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑒 ∈ ω)
64 fnfvelrn 7083 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn ω ∧ 𝑒 ∈ ω) → (𝐹𝑒) ∈ ran 𝐹)
6559, 63, 64syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹𝑒) ∈ ran 𝐹)
66 peano2 7881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑒 ∈ ω → suc 𝑒 ∈ ω)
6766ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → suc 𝑒 ∈ ω)
68 fnfvelrn 7083 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn ω ∧ suc 𝑒 ∈ ω) → (𝐹‘suc 𝑒) ∈ ran 𝐹)
6959, 67, 68syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹‘suc 𝑒) ∈ ran 𝐹)
70 potr 5602 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 Po ran 𝐹 ∧ ((𝐹𝑏) ∈ ran 𝐹 ∧ (𝐹𝑒) ∈ ran 𝐹 ∧ (𝐹‘suc 𝑒) ∈ ran 𝐹)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
7158, 62, 65, 69, 70syl13anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
7271imp 408 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹𝑏)𝑅(𝐹𝑒) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒))) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒))
7372ancom2s 649 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∧ (𝐹𝑏)𝑅(𝐹𝑒))) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒))
7473orcd 872 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∧ (𝐹𝑏)𝑅(𝐹𝑒))) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))
7574expr 458 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → ((𝐹𝑏)𝑅(𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
76 breq1 5152 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑏) = (𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ↔ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)))
7776biimprcd 249 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) → ((𝐹𝑏) = (𝐹𝑒) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
78 orc 866 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))
7977, 78syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) → ((𝐹𝑏) = (𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8079adantl 483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → ((𝐹𝑏) = (𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8175, 80jaod 858 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8281ex 414 . . . . . . . . . . . . . . . . . . . 20 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
83 breq2 5153 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑒) = (𝐹‘suc 𝑒) → ((𝐹𝑏)𝑅(𝐹𝑒) ↔ (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
84 eqeq2 2745 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑒) = (𝐹‘suc 𝑒) → ((𝐹𝑏) = (𝐹𝑒) ↔ (𝐹𝑏) = (𝐹‘suc 𝑒)))
8583, 84orbi12d 918 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑒) = (𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) ↔ ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8685biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑒) = (𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8786a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → ((𝐹𝑒) = (𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
8882, 87jaod 858 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
89883adantr2 1171 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
9057, 89mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
9190ex 414 . . . . . . . . . . . . . . . 16 (((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
9291a2d 29 . . . . . . . . . . . . . . 15 (((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒))) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
9330, 35, 40, 45, 48, 92findsg 7890 . . . . . . . . . . . . . 14 (((𝑐 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑐) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
9493ancom1s 652 . . . . . . . . . . . . 13 (((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ∧ 𝑏𝑐) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
9594impcom 409 . . . . . . . . . . . 12 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ∧ 𝑏𝑐)) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))
9695expr 458 . . . . . . . . . . 11 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
9712, 13, 25, 96vtocl2 3552 . . . . . . . . . 10 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑𝑒 → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒))))
98 eleq1w 2817 . . . . . . . . . . . . . . 15 (𝑏 = 𝑒 → (𝑏 ∈ ω ↔ 𝑒 ∈ ω))
99 eleq1w 2817 . . . . . . . . . . . . . . 15 (𝑐 = 𝑑 → (𝑐 ∈ ω ↔ 𝑑 ∈ ω))
10098, 99bi2anan9 638 . . . . . . . . . . . . . 14 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ↔ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)))
101100anbi2d 630 . . . . . . . . . . . . 13 ((𝑏 = 𝑒𝑐 = 𝑑) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω))))
102 sseq12 4010 . . . . . . . . . . . . . 14 ((𝑏 = 𝑒𝑐 = 𝑑) → (𝑏𝑐𝑒𝑑))
103 fveq2 6892 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑒 → (𝐹𝑏) = (𝐹𝑒))
104 fveq2 6892 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑑 → (𝐹𝑐) = (𝐹𝑑))
105103, 104breqan12d 5165 . . . . . . . . . . . . . . 15 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝐹𝑏)𝑅(𝐹𝑐) ↔ (𝐹𝑒)𝑅(𝐹𝑑)))
106103, 104eqeqan12d 2747 . . . . . . . . . . . . . . 15 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝐹𝑏) = (𝐹𝑐) ↔ (𝐹𝑒) = (𝐹𝑑)))
107105, 106orbi12d 918 . . . . . . . . . . . . . 14 ((𝑏 = 𝑒𝑐 = 𝑑) → (((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)) ↔ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
108102, 107imbi12d 345 . . . . . . . . . . . . 13 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))) ↔ (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑)))))
109101, 108imbi12d 345 . . . . . . . . . . . 12 ((𝑏 = 𝑒𝑐 = 𝑑) → ((((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))) ↔ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)) → (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))))
11013, 12, 109, 96vtocl2 3552 . . . . . . . . . . 11 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)) → (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
111110ancom2s 649 . . . . . . . . . 10 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
11297, 111orim12d 964 . . . . . . . . 9 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → ((𝑑𝑒𝑒𝑑) → (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) ∨ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑)))))
11311, 112mpd 15 . . . . . . . 8 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) ∨ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
114 3mix1 1331 . . . . . . . . . 10 ((𝐹𝑑)𝑅(𝐹𝑒) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
115 3mix2 1332 . . . . . . . . . 10 ((𝐹𝑑) = (𝐹𝑒) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
116114, 115jaoi 856 . . . . . . . . 9 (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
117 3mix3 1333 . . . . . . . . . 10 ((𝐹𝑒)𝑅(𝐹𝑑) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
118115eqcoms 2741 . . . . . . . . . 10 ((𝐹𝑒) = (𝐹𝑑) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
119117, 118jaoi 856 . . . . . . . . 9 (((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑)) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
120116, 119jaoi 856 . . . . . . . 8 ((((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) ∨ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
121113, 120syl 17 . . . . . . 7 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
122 breq12 5154 . . . . . . . 8 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → ((𝐹𝑑)𝑅(𝐹𝑒) ↔ 𝑏𝑅𝑐))
123 eqeq12 2750 . . . . . . . 8 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → ((𝐹𝑑) = (𝐹𝑒) ↔ 𝑏 = 𝑐))
124 breq12 5154 . . . . . . . . 9 (((𝐹𝑒) = 𝑐 ∧ (𝐹𝑑) = 𝑏) → ((𝐹𝑒)𝑅(𝐹𝑑) ↔ 𝑐𝑅𝑏))
125124ancoms 460 . . . . . . . 8 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → ((𝐹𝑒)𝑅(𝐹𝑑) ↔ 𝑐𝑅𝑏))
126122, 123, 1253orbi123d 1436 . . . . . . 7 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)) ↔ (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
127121, 126syl5ibcom 244 . . . . . 6 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
128127rexlimdvva 3212 . . . . 5 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → (∃𝑑 ∈ ω ∃𝑒 ∈ ω ((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
1296, 128biimtrrid 242 . . . 4 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
1305, 129sylbid 239 . . 3 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
131130ralrimivv 3199 . 2 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ∀𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹(𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏))
132 df-so 5590 . 2 (𝑅 Or ran 𝐹 ↔ (𝑅 Po ran 𝐹 ∧ ∀𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹(𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
1331, 131, 132sylanbrc 584 1 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Or ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  wss 3949   class class class wbr 5149   Po wpo 5587   Or wor 5588  ran crn 5678  Ord word 6364  suc csuc 6367   Fn wfn 6539  cfv 6544  ωcom 7855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-om 7856
This theorem is referenced by:  fin23lem40  10346
  Copyright terms: Public domain W3C validator