MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sornom Structured version   Visualization version   GIF version

Theorem sornom 10308
Description: The range of a single-step monotone function from ω into a partially ordered set is a chain. (Contributed by Stefan O'Rear, 3-Nov-2014.)
Assertion
Ref Expression
sornom ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Or ran 𝐹)
Distinct variable groups:   𝐹,𝑎   𝑅,𝑎

Proof of Theorem sornom
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1135 . 2 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Po ran 𝐹)
2 fvelrnb 6964 . . . . . 6 (𝐹 Fn ω → (𝑏 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ω (𝐹𝑑) = 𝑏))
3 fvelrnb 6964 . . . . . 6 (𝐹 Fn ω → (𝑐 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐))
42, 3anbi12d 630 . . . . 5 (𝐹 Fn ω → ((𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹) ↔ (∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐)))
543ad2ant1 1130 . . . 4 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹) ↔ (∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐)))
6 reeanv 3224 . . . . 5 (∃𝑑 ∈ ω ∃𝑒 ∈ ω ((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) ↔ (∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐))
7 nnord 7884 . . . . . . . . . . 11 (𝑑 ∈ ω → Ord 𝑑)
8 nnord 7884 . . . . . . . . . . 11 (𝑒 ∈ ω → Ord 𝑒)
9 ordtri2or2 6473 . . . . . . . . . . 11 ((Ord 𝑑 ∧ Ord 𝑒) → (𝑑𝑒𝑒𝑑))
107, 8, 9syl2an 594 . . . . . . . . . 10 ((𝑑 ∈ ω ∧ 𝑒 ∈ ω) → (𝑑𝑒𝑒𝑑))
1110adantl 480 . . . . . . . . 9 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑𝑒𝑒𝑑))
12 vex 3477 . . . . . . . . . . 11 𝑑 ∈ V
13 vex 3477 . . . . . . . . . . 11 𝑒 ∈ V
14 eleq1w 2812 . . . . . . . . . . . . . 14 (𝑏 = 𝑑 → (𝑏 ∈ ω ↔ 𝑑 ∈ ω))
15 eleq1w 2812 . . . . . . . . . . . . . 14 (𝑐 = 𝑒 → (𝑐 ∈ ω ↔ 𝑒 ∈ ω))
1614, 15bi2anan9 636 . . . . . . . . . . . . 13 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ↔ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)))
1716anbi2d 628 . . . . . . . . . . . 12 ((𝑏 = 𝑑𝑐 = 𝑒) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω))))
18 sseq12 4009 . . . . . . . . . . . . 13 ((𝑏 = 𝑑𝑐 = 𝑒) → (𝑏𝑐𝑑𝑒))
19 fveq2 6902 . . . . . . . . . . . . . . 15 (𝑏 = 𝑑 → (𝐹𝑏) = (𝐹𝑑))
20 fveq2 6902 . . . . . . . . . . . . . . 15 (𝑐 = 𝑒 → (𝐹𝑐) = (𝐹𝑒))
2119, 20breqan12d 5168 . . . . . . . . . . . . . 14 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝐹𝑏)𝑅(𝐹𝑐) ↔ (𝐹𝑑)𝑅(𝐹𝑒)))
2219, 20eqeqan12d 2742 . . . . . . . . . . . . . 14 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝐹𝑏) = (𝐹𝑐) ↔ (𝐹𝑑) = (𝐹𝑒)))
2321, 22orbi12d 916 . . . . . . . . . . . . 13 ((𝑏 = 𝑑𝑐 = 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)) ↔ ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒))))
2418, 23imbi12d 343 . . . . . . . . . . . 12 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))) ↔ (𝑑𝑒 → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)))))
2517, 24imbi12d 343 . . . . . . . . . . 11 ((𝑏 = 𝑑𝑐 = 𝑒) → ((((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))) ↔ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑𝑒 → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒))))))
26 fveq2 6902 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑏 → (𝐹𝑑) = (𝐹𝑏))
2726breq2d 5164 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑏 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹𝑏)))
2826eqeq2d 2739 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑏 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹𝑏)))
2927, 28orbi12d 916 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑏 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏))))
3029imbi2d 339 . . . . . . . . . . . . . . 15 (𝑑 = 𝑏 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏)))))
31 fveq2 6902 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑒 → (𝐹𝑑) = (𝐹𝑒))
3231breq2d 5164 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑒 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹𝑒)))
3331eqeq2d 2739 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑒 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹𝑒)))
3432, 33orbi12d 916 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒))))
3534imbi2d 339 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)))))
36 fveq2 6902 . . . . . . . . . . . . . . . . . 18 (𝑑 = suc 𝑒 → (𝐹𝑑) = (𝐹‘suc 𝑒))
3736breq2d 5164 . . . . . . . . . . . . . . . . 17 (𝑑 = suc 𝑒 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
3836eqeq2d 2739 . . . . . . . . . . . . . . . . 17 (𝑑 = suc 𝑒 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹‘suc 𝑒)))
3937, 38orbi12d 916 . . . . . . . . . . . . . . . 16 (𝑑 = suc 𝑒 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
4039imbi2d 339 . . . . . . . . . . . . . . 15 (𝑑 = suc 𝑒 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
41 fveq2 6902 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑐 → (𝐹𝑑) = (𝐹𝑐))
4241breq2d 5164 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑐 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹𝑐)))
4341eqeq2d 2739 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑐 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹𝑐)))
4442, 43orbi12d 916 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑐 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
4544imbi2d 339 . . . . . . . . . . . . . . 15 (𝑑 = 𝑐 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))))
46 eqid 2728 . . . . . . . . . . . . . . . . 17 (𝐹𝑏) = (𝐹𝑏)
4746olci 864 . . . . . . . . . . . . . . . 16 ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏))
48472a1i 12 . . . . . . . . . . . . . . 15 (𝑏 ∈ ω → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏))))
49 fveq2 6902 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑒 → (𝐹𝑎) = (𝐹𝑒))
50 suceq 6440 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑒 → suc 𝑎 = suc 𝑒)
5150fveq2d 6906 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑒 → (𝐹‘suc 𝑎) = (𝐹‘suc 𝑒))
5249, 51breq12d 5165 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑒 → ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ↔ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)))
5349, 51eqeq12d 2744 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑒 → ((𝐹𝑎) = (𝐹‘suc 𝑎) ↔ (𝐹𝑒) = (𝐹‘suc 𝑒)))
5452, 53orbi12d 916 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑒 → (((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ↔ ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒))))
55 simpr2 1192 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)))
56 simplll 773 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → 𝑒 ∈ ω)
5754, 55, 56rspcdva 3612 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒)))
58 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑅 Po ran 𝐹)
59 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝐹 Fn ω)
60 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑏 ∈ ω)
61 fnfvelrn 7095 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn ω ∧ 𝑏 ∈ ω) → (𝐹𝑏) ∈ ran 𝐹)
6259, 60, 61syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹𝑏) ∈ ran 𝐹)
63 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑒 ∈ ω)
64 fnfvelrn 7095 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn ω ∧ 𝑒 ∈ ω) → (𝐹𝑒) ∈ ran 𝐹)
6559, 63, 64syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹𝑒) ∈ ran 𝐹)
66 peano2 7902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑒 ∈ ω → suc 𝑒 ∈ ω)
6766ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → suc 𝑒 ∈ ω)
68 fnfvelrn 7095 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn ω ∧ suc 𝑒 ∈ ω) → (𝐹‘suc 𝑒) ∈ ran 𝐹)
6959, 67, 68syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹‘suc 𝑒) ∈ ran 𝐹)
70 potr 5607 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 Po ran 𝐹 ∧ ((𝐹𝑏) ∈ ran 𝐹 ∧ (𝐹𝑒) ∈ ran 𝐹 ∧ (𝐹‘suc 𝑒) ∈ ran 𝐹)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
7158, 62, 65, 69, 70syl13anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
7271imp 405 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹𝑏)𝑅(𝐹𝑒) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒))) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒))
7372ancom2s 648 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∧ (𝐹𝑏)𝑅(𝐹𝑒))) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒))
7473orcd 871 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∧ (𝐹𝑏)𝑅(𝐹𝑒))) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))
7574expr 455 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → ((𝐹𝑏)𝑅(𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
76 breq1 5155 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑏) = (𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ↔ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)))
7776biimprcd 249 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) → ((𝐹𝑏) = (𝐹𝑒) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
78 orc 865 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))
7977, 78syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) → ((𝐹𝑏) = (𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8079adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → ((𝐹𝑏) = (𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8175, 80jaod 857 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8281ex 411 . . . . . . . . . . . . . . . . . . . 20 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
83 breq2 5156 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑒) = (𝐹‘suc 𝑒) → ((𝐹𝑏)𝑅(𝐹𝑒) ↔ (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
84 eqeq2 2740 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑒) = (𝐹‘suc 𝑒) → ((𝐹𝑏) = (𝐹𝑒) ↔ (𝐹𝑏) = (𝐹‘suc 𝑒)))
8583, 84orbi12d 916 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑒) = (𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) ↔ ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8685biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑒) = (𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8786a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → ((𝐹𝑒) = (𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
8882, 87jaod 857 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
89883adantr2 1167 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
9057, 89mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
9190ex 411 . . . . . . . . . . . . . . . 16 (((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
9291a2d 29 . . . . . . . . . . . . . . 15 (((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒))) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
9330, 35, 40, 45, 48, 92findsg 7911 . . . . . . . . . . . . . 14 (((𝑐 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑐) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
9493ancom1s 651 . . . . . . . . . . . . 13 (((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ∧ 𝑏𝑐) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
9594impcom 406 . . . . . . . . . . . 12 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ∧ 𝑏𝑐)) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))
9695expr 455 . . . . . . . . . . 11 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
9712, 13, 25, 96vtocl2 3554 . . . . . . . . . 10 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑𝑒 → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒))))
98 eleq1w 2812 . . . . . . . . . . . . . . 15 (𝑏 = 𝑒 → (𝑏 ∈ ω ↔ 𝑒 ∈ ω))
99 eleq1w 2812 . . . . . . . . . . . . . . 15 (𝑐 = 𝑑 → (𝑐 ∈ ω ↔ 𝑑 ∈ ω))
10098, 99bi2anan9 636 . . . . . . . . . . . . . 14 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ↔ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)))
101100anbi2d 628 . . . . . . . . . . . . 13 ((𝑏 = 𝑒𝑐 = 𝑑) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω))))
102 sseq12 4009 . . . . . . . . . . . . . 14 ((𝑏 = 𝑒𝑐 = 𝑑) → (𝑏𝑐𝑒𝑑))
103 fveq2 6902 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑒 → (𝐹𝑏) = (𝐹𝑒))
104 fveq2 6902 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑑 → (𝐹𝑐) = (𝐹𝑑))
105103, 104breqan12d 5168 . . . . . . . . . . . . . . 15 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝐹𝑏)𝑅(𝐹𝑐) ↔ (𝐹𝑒)𝑅(𝐹𝑑)))
106103, 104eqeqan12d 2742 . . . . . . . . . . . . . . 15 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝐹𝑏) = (𝐹𝑐) ↔ (𝐹𝑒) = (𝐹𝑑)))
107105, 106orbi12d 916 . . . . . . . . . . . . . 14 ((𝑏 = 𝑒𝑐 = 𝑑) → (((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)) ↔ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
108102, 107imbi12d 343 . . . . . . . . . . . . 13 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))) ↔ (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑)))))
109101, 108imbi12d 343 . . . . . . . . . . . 12 ((𝑏 = 𝑒𝑐 = 𝑑) → ((((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))) ↔ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)) → (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))))
11013, 12, 109, 96vtocl2 3554 . . . . . . . . . . 11 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)) → (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
111110ancom2s 648 . . . . . . . . . 10 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
11297, 111orim12d 962 . . . . . . . . 9 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → ((𝑑𝑒𝑒𝑑) → (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) ∨ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑)))))
11311, 112mpd 15 . . . . . . . 8 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) ∨ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
114 3mix1 1327 . . . . . . . . . 10 ((𝐹𝑑)𝑅(𝐹𝑒) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
115 3mix2 1328 . . . . . . . . . 10 ((𝐹𝑑) = (𝐹𝑒) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
116114, 115jaoi 855 . . . . . . . . 9 (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
117 3mix3 1329 . . . . . . . . . 10 ((𝐹𝑒)𝑅(𝐹𝑑) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
118115eqcoms 2736 . . . . . . . . . 10 ((𝐹𝑒) = (𝐹𝑑) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
119117, 118jaoi 855 . . . . . . . . 9 (((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑)) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
120116, 119jaoi 855 . . . . . . . 8 ((((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) ∨ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
121113, 120syl 17 . . . . . . 7 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
122 breq12 5157 . . . . . . . 8 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → ((𝐹𝑑)𝑅(𝐹𝑒) ↔ 𝑏𝑅𝑐))
123 eqeq12 2745 . . . . . . . 8 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → ((𝐹𝑑) = (𝐹𝑒) ↔ 𝑏 = 𝑐))
124 breq12 5157 . . . . . . . . 9 (((𝐹𝑒) = 𝑐 ∧ (𝐹𝑑) = 𝑏) → ((𝐹𝑒)𝑅(𝐹𝑑) ↔ 𝑐𝑅𝑏))
125124ancoms 457 . . . . . . . 8 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → ((𝐹𝑒)𝑅(𝐹𝑑) ↔ 𝑐𝑅𝑏))
126122, 123, 1253orbi123d 1431 . . . . . . 7 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)) ↔ (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
127121, 126syl5ibcom 244 . . . . . 6 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
128127rexlimdvva 3209 . . . . 5 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → (∃𝑑 ∈ ω ∃𝑒 ∈ ω ((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
1296, 128biimtrrid 242 . . . 4 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
1305, 129sylbid 239 . . 3 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
131130ralrimivv 3196 . 2 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ∀𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹(𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏))
132 df-so 5595 . 2 (𝑅 Or ran 𝐹 ↔ (𝑅 Po ran 𝐹 ∧ ∀𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹(𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
1331, 131, 132sylanbrc 581 1 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Or ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  wral 3058  wrex 3067  wss 3949   class class class wbr 5152   Po wpo 5592   Or wor 5593  ran crn 5683  Ord word 6373  suc csuc 6376   Fn wfn 6548  cfv 6553  ωcom 7876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-fv 6561  df-om 7877
This theorem is referenced by:  fin23lem40  10382
  Copyright terms: Public domain W3C validator