Step | Hyp | Ref
| Expression |
1 | | simp3 1137 |
. 2
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Po ran 𝐹) |
2 | | fvelrnb 6830 |
. . . . . 6
⊢ (𝐹 Fn ω → (𝑏 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ω (𝐹‘𝑑) = 𝑏)) |
3 | | fvelrnb 6830 |
. . . . . 6
⊢ (𝐹 Fn ω → (𝑐 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ω (𝐹‘𝑒) = 𝑐)) |
4 | 2, 3 | anbi12d 631 |
. . . . 5
⊢ (𝐹 Fn ω → ((𝑏 ∈ ran 𝐹 ∧ 𝑐 ∈ ran 𝐹) ↔ (∃𝑑 ∈ ω (𝐹‘𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹‘𝑒) = 𝑐))) |
5 | 4 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝑏 ∈ ran 𝐹 ∧ 𝑐 ∈ ran 𝐹) ↔ (∃𝑑 ∈ ω (𝐹‘𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹‘𝑒) = 𝑐))) |
6 | | reeanv 3294 |
. . . . 5
⊢
(∃𝑑 ∈
ω ∃𝑒 ∈
ω ((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) ↔ (∃𝑑 ∈ ω (𝐹‘𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹‘𝑒) = 𝑐)) |
7 | | nnord 7720 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ ω → Ord 𝑑) |
8 | | nnord 7720 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ ω → Ord 𝑒) |
9 | | ordtri2or2 6362 |
. . . . . . . . . . 11
⊢ ((Ord
𝑑 ∧ Ord 𝑒) → (𝑑 ⊆ 𝑒 ∨ 𝑒 ⊆ 𝑑)) |
10 | 7, 8, 9 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ ω ∧ 𝑒 ∈ ω) → (𝑑 ⊆ 𝑒 ∨ 𝑒 ⊆ 𝑑)) |
11 | 10 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑 ⊆ 𝑒 ∨ 𝑒 ⊆ 𝑑)) |
12 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑑 ∈ V |
13 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑒 ∈ V |
14 | | eleq1w 2821 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑑 → (𝑏 ∈ ω ↔ 𝑑 ∈ ω)) |
15 | | eleq1w 2821 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑒 → (𝑐 ∈ ω ↔ 𝑒 ∈ ω)) |
16 | 14, 15 | bi2anan9 636 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ↔ (𝑑 ∈ ω ∧ 𝑒 ∈ ω))) |
17 | 16 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)))) |
18 | | sseq12 3948 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → (𝑏 ⊆ 𝑐 ↔ 𝑑 ⊆ 𝑒)) |
19 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑑 → (𝐹‘𝑏) = (𝐹‘𝑑)) |
20 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑒 → (𝐹‘𝑐) = (𝐹‘𝑒)) |
21 | 19, 20 | breqan12d 5090 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ↔ (𝐹‘𝑑)𝑅(𝐹‘𝑒))) |
22 | 19, 20 | eqeqan12d 2752 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → ((𝐹‘𝑏) = (𝐹‘𝑐) ↔ (𝐹‘𝑑) = (𝐹‘𝑒))) |
23 | 21, 22 | orbi12d 916 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → (((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)) ↔ ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)))) |
24 | 18, 23 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → ((𝑏 ⊆ 𝑐 → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐))) ↔ (𝑑 ⊆ 𝑒 → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒))))) |
25 | 17, 24 | imbi12d 345 |
. . . . . . . . . . 11
⊢ ((𝑏 = 𝑑 ∧ 𝑐 = 𝑒) → ((((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏 ⊆ 𝑐 → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)))) ↔ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑 ⊆ 𝑒 → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)))))) |
26 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑏 → (𝐹‘𝑑) = (𝐹‘𝑏)) |
27 | 26 | breq2d 5086 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑏 → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ↔ (𝐹‘𝑏)𝑅(𝐹‘𝑏))) |
28 | 26 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑏 → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ (𝐹‘𝑏) = (𝐹‘𝑏))) |
29 | 27, 28 | orbi12d 916 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = 𝑏 → (((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑)) ↔ ((𝐹‘𝑏)𝑅(𝐹‘𝑏) ∨ (𝐹‘𝑏) = (𝐹‘𝑏)))) |
30 | 29 | imbi2d 341 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝑏 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑏) ∨ (𝐹‘𝑏) = (𝐹‘𝑏))))) |
31 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑒 → (𝐹‘𝑑) = (𝐹‘𝑒)) |
32 | 31 | breq2d 5086 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑒 → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ↔ (𝐹‘𝑏)𝑅(𝐹‘𝑒))) |
33 | 31 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑒 → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ (𝐹‘𝑏) = (𝐹‘𝑒))) |
34 | 32, 33 | orbi12d 916 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = 𝑒 → (((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑)) ↔ ((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)))) |
35 | 34 | imbi2d 341 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝑒 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒))))) |
36 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = suc 𝑒 → (𝐹‘𝑑) = (𝐹‘suc 𝑒)) |
37 | 36 | breq2d 5086 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = suc 𝑒 → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ↔ (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒))) |
38 | 36 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = suc 𝑒 → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ (𝐹‘𝑏) = (𝐹‘suc 𝑒))) |
39 | 37, 38 | orbi12d 916 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = suc 𝑒 → (((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑)) ↔ ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
40 | 39 | imbi2d 341 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = suc 𝑒 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
41 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑐 → (𝐹‘𝑑) = (𝐹‘𝑐)) |
42 | 41 | breq2d 5086 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑐 → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ↔ (𝐹‘𝑏)𝑅(𝐹‘𝑐))) |
43 | 41 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑐 → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ (𝐹‘𝑏) = (𝐹‘𝑐))) |
44 | 42, 43 | orbi12d 916 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = 𝑐 → (((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑)) ↔ ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)))) |
45 | 44 | imbi2d 341 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝑐 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑏) = (𝐹‘𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐))))) |
46 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹‘𝑏) = (𝐹‘𝑏) |
47 | 46 | olci 863 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑏)𝑅(𝐹‘𝑏) ∨ (𝐹‘𝑏) = (𝐹‘𝑏)) |
48 | 47 | 2a1i 12 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ ω → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑏) ∨ (𝐹‘𝑏) = (𝐹‘𝑏)))) |
49 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑒 → (𝐹‘𝑎) = (𝐹‘𝑒)) |
50 | | suceq 6331 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑒 → suc 𝑎 = suc 𝑒) |
51 | 50 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑒 → (𝐹‘suc 𝑎) = (𝐹‘suc 𝑒)) |
52 | 49, 51 | breq12d 5087 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑒 → ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ↔ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒))) |
53 | 49, 51 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑒 → ((𝐹‘𝑎) = (𝐹‘suc 𝑎) ↔ (𝐹‘𝑒) = (𝐹‘suc 𝑒))) |
54 | 52, 53 | orbi12d 916 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑒 → (((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ↔ ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑒) = (𝐹‘suc 𝑒)))) |
55 | | simpr2 1194 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎))) |
56 | | simplll 772 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → 𝑒 ∈ ω) |
57 | 54, 55, 56 | rspcdva 3562 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑒) = (𝐹‘suc 𝑒))) |
58 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑅 Po ran 𝐹) |
59 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝐹 Fn ω) |
60 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑏 ∈ ω) |
61 | | fnfvelrn 6958 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹 Fn ω ∧ 𝑏 ∈ ω) → (𝐹‘𝑏) ∈ ran 𝐹) |
62 | 59, 60, 61 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹‘𝑏) ∈ ran 𝐹) |
63 | | simplll 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑒 ∈ ω) |
64 | | fnfvelrn 6958 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹 Fn ω ∧ 𝑒 ∈ ω) → (𝐹‘𝑒) ∈ ran 𝐹) |
65 | 59, 63, 64 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹‘𝑒) ∈ ran 𝐹) |
66 | | peano2 7737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑒 ∈ ω → suc 𝑒 ∈
ω) |
67 | 66 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → suc 𝑒 ∈ ω) |
68 | | fnfvelrn 6958 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹 Fn ω ∧ suc 𝑒 ∈ ω) → (𝐹‘suc 𝑒) ∈ ran 𝐹) |
69 | 59, 67, 68 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹‘suc 𝑒) ∈ ran 𝐹) |
70 | | potr 5516 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑅 Po ran 𝐹 ∧ ((𝐹‘𝑏) ∈ ran 𝐹 ∧ (𝐹‘𝑒) ∈ ran 𝐹 ∧ (𝐹‘suc 𝑒) ∈ ran 𝐹)) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∧ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒)) → (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒))) |
71 | 58, 62, 65, 69, 70 | syl13anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∧ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒)) → (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒))) |
72 | 71 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑒 ∈
ω ∧ 𝑏 ∈
ω) ∧ 𝑏 ⊆
𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∧ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒))) → (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒)) |
73 | 72 | ancom2s 647 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑒 ∈
ω ∧ 𝑏 ∈
ω) ∧ 𝑏 ⊆
𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) ∧ (𝐹‘𝑏)𝑅(𝐹‘𝑒))) → (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒)) |
74 | 73 | orcd 870 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑒 ∈
ω ∧ 𝑏 ∈
ω) ∧ 𝑏 ⊆
𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) ∧ (𝐹‘𝑏)𝑅(𝐹‘𝑒))) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))) |
75 | 74 | expr 457 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑒 ∈
ω ∧ 𝑏 ∈
ω) ∧ 𝑏 ⊆
𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
76 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹‘𝑏) = (𝐹‘𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ↔ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒))) |
77 | 76 | biimprcd 249 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) → ((𝐹‘𝑏) = (𝐹‘𝑒) → (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒))) |
78 | | orc 864 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))) |
79 | 77, 78 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) → ((𝐹‘𝑏) = (𝐹‘𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
80 | 79 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑒 ∈
ω ∧ 𝑏 ∈
ω) ∧ 𝑏 ⊆
𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒)) → ((𝐹‘𝑏) = (𝐹‘𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
81 | 75, 80 | jaod 856 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑒 ∈
ω ∧ 𝑏 ∈
ω) ∧ 𝑏 ⊆
𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹‘𝑒)𝑅(𝐹‘suc 𝑒)) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
82 | 81 | ex 413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → ((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
83 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑒) = (𝐹‘suc 𝑒) → ((𝐹‘𝑏)𝑅(𝐹‘𝑒) ↔ (𝐹‘𝑏)𝑅(𝐹‘suc 𝑒))) |
84 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑒) = (𝐹‘suc 𝑒) → ((𝐹‘𝑏) = (𝐹‘𝑒) ↔ (𝐹‘𝑏) = (𝐹‘suc 𝑒))) |
85 | 83, 84 | orbi12d 916 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑒) = (𝐹‘suc 𝑒) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) ↔ ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
86 | 85 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑒) = (𝐹‘suc 𝑒) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
87 | 86 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → ((𝐹‘𝑒) = (𝐹‘suc 𝑒) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
88 | 82, 87 | jaod 856 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑒) = (𝐹‘suc 𝑒)) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
89 | 88 | 3adantr2 1169 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → (((𝐹‘𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑒) = (𝐹‘suc 𝑒)) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
90 | 57, 89 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒)))) |
91 | 90 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → (((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒)) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
92 | 91 | a2d 29 |
. . . . . . . . . . . . . . 15
⊢ (((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑒) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑏) = (𝐹‘𝑒))) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹‘𝑏) = (𝐹‘suc 𝑒))))) |
93 | 30, 35, 40, 45, 48, 92 | findsg 7746 |
. . . . . . . . . . . . . 14
⊢ (((𝑐 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑐) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)))) |
94 | 93 | ancom1s 650 |
. . . . . . . . . . . . 13
⊢ (((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ∧ 𝑏 ⊆ 𝑐) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)))) |
95 | 94 | impcom 408 |
. . . . . . . . . . . 12
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ∧ 𝑏 ⊆ 𝑐)) → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐))) |
96 | 95 | expr 457 |
. . . . . . . . . . 11
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏 ⊆ 𝑐 → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)))) |
97 | 12, 13, 25, 96 | vtocl2 3500 |
. . . . . . . . . 10
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑 ⊆ 𝑒 → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)))) |
98 | | eleq1w 2821 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑒 → (𝑏 ∈ ω ↔ 𝑒 ∈ ω)) |
99 | | eleq1w 2821 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑑 → (𝑐 ∈ ω ↔ 𝑑 ∈ ω)) |
100 | 98, 99 | bi2anan9 636 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ↔ (𝑒 ∈ ω ∧ 𝑑 ∈ ω))) |
101 | 100 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)))) |
102 | | sseq12 3948 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → (𝑏 ⊆ 𝑐 ↔ 𝑒 ⊆ 𝑑)) |
103 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑒 → (𝐹‘𝑏) = (𝐹‘𝑒)) |
104 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑑 → (𝐹‘𝑐) = (𝐹‘𝑑)) |
105 | 103, 104 | breqan12d 5090 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ↔ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
106 | 103, 104 | eqeqan12d 2752 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → ((𝐹‘𝑏) = (𝐹‘𝑐) ↔ (𝐹‘𝑒) = (𝐹‘𝑑))) |
107 | 105, 106 | orbi12d 916 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → (((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)) ↔ ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑)))) |
108 | 102, 107 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → ((𝑏 ⊆ 𝑐 → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐))) ↔ (𝑒 ⊆ 𝑑 → ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑))))) |
109 | 101, 108 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 𝑒 ∧ 𝑐 = 𝑑) → ((((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏 ⊆ 𝑐 → ((𝐹‘𝑏)𝑅(𝐹‘𝑐) ∨ (𝐹‘𝑏) = (𝐹‘𝑐)))) ↔ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)) → (𝑒 ⊆ 𝑑 → ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑)))))) |
110 | 13, 12, 109, 96 | vtocl2 3500 |
. . . . . . . . . . 11
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)) → (𝑒 ⊆ 𝑑 → ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑)))) |
111 | 110 | ancom2s 647 |
. . . . . . . . . 10
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑒 ⊆ 𝑑 → ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑)))) |
112 | 97, 111 | orim12d 962 |
. . . . . . . . 9
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → ((𝑑 ⊆ 𝑒 ∨ 𝑒 ⊆ 𝑑) → (((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)) ∨ ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑))))) |
113 | 11, 112 | mpd 15 |
. . . . . . . 8
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)) ∨ ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑)))) |
114 | | 3mix1 1329 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑑)𝑅(𝐹‘𝑒) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
115 | | 3mix2 1330 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑑) = (𝐹‘𝑒) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
116 | 114, 115 | jaoi 854 |
. . . . . . . . 9
⊢ (((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
117 | | 3mix3 1331 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑒)𝑅(𝐹‘𝑑) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
118 | 115 | eqcoms 2746 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑒) = (𝐹‘𝑑) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
119 | 117, 118 | jaoi 854 |
. . . . . . . . 9
⊢ (((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑)) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
120 | 116, 119 | jaoi 854 |
. . . . . . . 8
⊢ ((((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒)) ∨ ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ∨ (𝐹‘𝑒) = (𝐹‘𝑑))) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
121 | 113, 120 | syl 17 |
. . . . . . 7
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑))) |
122 | | breq12 5079 |
. . . . . . . 8
⊢ (((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) → ((𝐹‘𝑑)𝑅(𝐹‘𝑒) ↔ 𝑏𝑅𝑐)) |
123 | | eqeq12 2755 |
. . . . . . . 8
⊢ (((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) → ((𝐹‘𝑑) = (𝐹‘𝑒) ↔ 𝑏 = 𝑐)) |
124 | | breq12 5079 |
. . . . . . . . 9
⊢ (((𝐹‘𝑒) = 𝑐 ∧ (𝐹‘𝑑) = 𝑏) → ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ↔ 𝑐𝑅𝑏)) |
125 | 124 | ancoms 459 |
. . . . . . . 8
⊢ (((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) → ((𝐹‘𝑒)𝑅(𝐹‘𝑑) ↔ 𝑐𝑅𝑏)) |
126 | 122, 123,
125 | 3orbi123d 1434 |
. . . . . . 7
⊢ (((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) → (((𝐹‘𝑑)𝑅(𝐹‘𝑒) ∨ (𝐹‘𝑑) = (𝐹‘𝑒) ∨ (𝐹‘𝑒)𝑅(𝐹‘𝑑)) ↔ (𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏))) |
127 | 121, 126 | syl5ibcom 244 |
. . . . . 6
⊢ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) → (𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏))) |
128 | 127 | rexlimdvva 3223 |
. . . . 5
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → (∃𝑑 ∈ ω ∃𝑒 ∈ ω ((𝐹‘𝑑) = 𝑏 ∧ (𝐹‘𝑒) = 𝑐) → (𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏))) |
129 | 6, 128 | syl5bir 242 |
. . . 4
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((∃𝑑 ∈ ω (𝐹‘𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹‘𝑒) = 𝑐) → (𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏))) |
130 | 5, 129 | sylbid 239 |
. . 3
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝑏 ∈ ran 𝐹 ∧ 𝑐 ∈ ran 𝐹) → (𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏))) |
131 | 130 | ralrimivv 3122 |
. 2
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ∀𝑏 ∈ ran 𝐹∀𝑐 ∈ ran 𝐹(𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏)) |
132 | | df-so 5504 |
. 2
⊢ (𝑅 Or ran 𝐹 ↔ (𝑅 Po ran 𝐹 ∧ ∀𝑏 ∈ ran 𝐹∀𝑐 ∈ ran 𝐹(𝑏𝑅𝑐 ∨ 𝑏 = 𝑐 ∨ 𝑐𝑅𝑏))) |
133 | 1, 131, 132 | sylanbrc 583 |
1
⊢ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹‘𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹‘𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Or ran 𝐹) |