MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wloglei Structured version   Visualization version   GIF version

Theorem wloglei 11822
Description: Form of wlogle 11823 where both sides of the equivalence are proven rather than showing that they are equivalent to each other. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
wlogle.1 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝜓𝜒))
wlogle.2 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝜓𝜃))
wlogle.3 (𝜑𝑆 ⊆ ℝ)
wloglei.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜃)
wloglei.5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜒)
Assertion
Ref Expression
wloglei ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝜒)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝜑   𝑤,𝑆,𝑥,𝑦,𝑧   𝜓,𝑥,𝑦   𝜒,𝑤,𝑧
Allowed substitution hints:   𝜓(𝑧,𝑤)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wloglei
StepHypRef Expression
1 wlogle.3 . . . 4 (𝜑𝑆 ⊆ ℝ)
21adantr 480 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 ⊆ ℝ)
3 simprr 772 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
42, 3sseldd 4009 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ ℝ)
5 simprl 770 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
62, 5sseldd 4009 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ ℝ)
7 vex 3492 . . 3 𝑥 ∈ V
8 vex 3492 . . 3 𝑦 ∈ V
9 eleq1w 2827 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝑆𝑥𝑆))
10 eleq1w 2827 . . . . . . 7 (𝑤 = 𝑦 → (𝑤𝑆𝑦𝑆))
119, 10bi2anan9 637 . . . . . 6 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝑧𝑆𝑤𝑆) ↔ (𝑥𝑆𝑦𝑆)))
1211anbi2d 629 . . . . 5 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ↔ (𝜑 ∧ (𝑥𝑆𝑦𝑆))))
13 breq12 5171 . . . . . 6 ((𝑤 = 𝑦𝑧 = 𝑥) → (𝑤𝑧𝑦𝑥))
1413ancoms 458 . . . . 5 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝑤𝑧𝑦𝑥))
1512, 14anbi12d 631 . . . 4 ((𝑧 = 𝑥𝑤 = 𝑦) → (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧) ↔ ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑦𝑥)))
16 wlogle.1 . . . 4 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝜓𝜒))
1715, 16imbi12d 344 . . 3 ((𝑧 = 𝑥𝑤 = 𝑦) → ((((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧) → 𝜓) ↔ (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑦𝑥) → 𝜒)))
18 vex 3492 . . . 4 𝑧 ∈ V
19 vex 3492 . . . 4 𝑤 ∈ V
20 ancom 460 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) ↔ (𝑦𝑆𝑥𝑆))
21 eleq1w 2827 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦𝑆𝑧𝑆))
22 eleq1w 2827 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝑆𝑤𝑆))
2321, 22bi2anan9 637 . . . . . . . 8 ((𝑦 = 𝑧𝑥 = 𝑤) → ((𝑦𝑆𝑥𝑆) ↔ (𝑧𝑆𝑤𝑆)))
2420, 23bitrid 283 . . . . . . 7 ((𝑦 = 𝑧𝑥 = 𝑤) → ((𝑥𝑆𝑦𝑆) ↔ (𝑧𝑆𝑤𝑆)))
2524anbi2d 629 . . . . . 6 ((𝑦 = 𝑧𝑥 = 𝑤) → ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ↔ (𝜑 ∧ (𝑧𝑆𝑤𝑆))))
26 breq12 5171 . . . . . . 7 ((𝑥 = 𝑤𝑦 = 𝑧) → (𝑥𝑦𝑤𝑧))
2726ancoms 458 . . . . . 6 ((𝑦 = 𝑧𝑥 = 𝑤) → (𝑥𝑦𝑤𝑧))
2825, 27anbi12d 631 . . . . 5 ((𝑦 = 𝑧𝑥 = 𝑤) → (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑥𝑦) ↔ ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧)))
29 equcom 2017 . . . . . . 7 (𝑦 = 𝑧𝑧 = 𝑦)
30 equcom 2017 . . . . . . 7 (𝑥 = 𝑤𝑤 = 𝑥)
31 wlogle.2 . . . . . . 7 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝜓𝜃))
3229, 30, 31syl2anb 597 . . . . . 6 ((𝑦 = 𝑧𝑥 = 𝑤) → (𝜓𝜃))
3332bicomd 223 . . . . 5 ((𝑦 = 𝑧𝑥 = 𝑤) → (𝜃𝜓))
3428, 33imbi12d 344 . . . 4 ((𝑦 = 𝑧𝑥 = 𝑤) → ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑥𝑦) → 𝜃) ↔ (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧) → 𝜓)))
35 df-3an 1089 . . . . . 6 ((𝑥𝑆𝑦𝑆𝑥𝑦) ↔ ((𝑥𝑆𝑦𝑆) ∧ 𝑥𝑦))
36 wloglei.4 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜃)
3735, 36sylan2br 594 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ 𝑥𝑦)) → 𝜃)
3837anassrs 467 . . . 4 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑥𝑦) → 𝜃)
3918, 19, 34, 38vtocl2 3578 . . 3 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧) → 𝜓)
407, 8, 17, 39vtocl2 3578 . 2 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑦𝑥) → 𝜒)
41 wloglei.5 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜒)
4235, 41sylan2br 594 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ 𝑥𝑦)) → 𝜒)
4342anassrs 467 . 2 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑥𝑦) → 𝜒)
444, 6, 40, 43lecasei 11396 1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wss 3976   class class class wbr 5166  cr 11183  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-pre-lttri 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330
This theorem is referenced by:  wlogle  11823  resconn  35214
  Copyright terms: Public domain W3C validator