Proof of Theorem wloglei
| Step | Hyp | Ref
| Expression |
| 1 | | wlogle.3 |
. . . 4
⊢ (𝜑 → 𝑆 ⊆ ℝ) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑆 ⊆ ℝ) |
| 3 | | simprr 772 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) |
| 4 | 2, 3 | sseldd 3966 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ ℝ) |
| 5 | | simprl 770 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑆) |
| 6 | 2, 5 | sseldd 3966 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ ℝ) |
| 7 | | vex 3468 |
. . 3
⊢ 𝑥 ∈ V |
| 8 | | vex 3468 |
. . 3
⊢ 𝑦 ∈ V |
| 9 | | eleq1w 2816 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝑆 ↔ 𝑥 ∈ 𝑆)) |
| 10 | | eleq1w 2816 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) |
| 11 | 9, 10 | bi2anan9 638 |
. . . . . 6
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ↔ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆))) |
| 12 | 11 | anbi2d 630 |
. . . . 5
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ↔ (𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)))) |
| 13 | | breq12 5130 |
. . . . . 6
⊢ ((𝑤 = 𝑦 ∧ 𝑧 = 𝑥) → (𝑤 ≤ 𝑧 ↔ 𝑦 ≤ 𝑥)) |
| 14 | 13 | ancoms 458 |
. . . . 5
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (𝑤 ≤ 𝑧 ↔ 𝑦 ≤ 𝑥)) |
| 15 | 12, 14 | anbi12d 632 |
. . . 4
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ 𝑤 ≤ 𝑧) ↔ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑦 ≤ 𝑥))) |
| 16 | | wlogle.1 |
. . . 4
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (𝜓 ↔ 𝜒)) |
| 17 | 15, 16 | imbi12d 344 |
. . 3
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → ((((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ 𝑤 ≤ 𝑧) → 𝜓) ↔ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑦 ≤ 𝑥) → 𝜒))) |
| 18 | | vex 3468 |
. . . 4
⊢ 𝑧 ∈ V |
| 19 | | vex 3468 |
. . . 4
⊢ 𝑤 ∈ V |
| 20 | | ancom 460 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ↔ (𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆)) |
| 21 | | eleq1w 2816 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑆 ↔ 𝑧 ∈ 𝑆)) |
| 22 | | eleq1w 2816 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝑆 ↔ 𝑤 ∈ 𝑆)) |
| 23 | 21, 22 | bi2anan9 638 |
. . . . . . . 8
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → ((𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ↔ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆))) |
| 24 | 20, 23 | bitrid 283 |
. . . . . . 7
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ↔ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆))) |
| 25 | 24 | anbi2d 630 |
. . . . . 6
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ↔ (𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)))) |
| 26 | | breq12 5130 |
. . . . . . 7
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧)) |
| 27 | 26 | ancoms 458 |
. . . . . 6
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧)) |
| 28 | 25, 27 | anbi12d 632 |
. . . . 5
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑥 ≤ 𝑦) ↔ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ 𝑤 ≤ 𝑧))) |
| 29 | | equcom 2016 |
. . . . . . 7
⊢ (𝑦 = 𝑧 ↔ 𝑧 = 𝑦) |
| 30 | | equcom 2016 |
. . . . . . 7
⊢ (𝑥 = 𝑤 ↔ 𝑤 = 𝑥) |
| 31 | | wlogle.2 |
. . . . . . 7
⊢ ((𝑧 = 𝑦 ∧ 𝑤 = 𝑥) → (𝜓 ↔ 𝜃)) |
| 32 | 29, 30, 31 | syl2anb 598 |
. . . . . 6
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → (𝜓 ↔ 𝜃)) |
| 33 | 32 | bicomd 223 |
. . . . 5
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → (𝜃 ↔ 𝜓)) |
| 34 | 28, 33 | imbi12d 344 |
. . . 4
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → ((((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑥 ≤ 𝑦) → 𝜃) ↔ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ 𝑤 ≤ 𝑧) → 𝜓))) |
| 35 | | df-3an 1088 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦) ↔ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ 𝑥 ≤ 𝑦)) |
| 36 | | wloglei.4 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → 𝜃) |
| 37 | 35, 36 | sylan2br 595 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ 𝑥 ≤ 𝑦)) → 𝜃) |
| 38 | 37 | anassrs 467 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑥 ≤ 𝑦) → 𝜃) |
| 39 | 18, 19, 34, 38 | vtocl2 3550 |
. . 3
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ 𝑤 ≤ 𝑧) → 𝜓) |
| 40 | 7, 8, 17, 39 | vtocl2 3550 |
. 2
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑦 ≤ 𝑥) → 𝜒) |
| 41 | | wloglei.5 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → 𝜒) |
| 42 | 35, 41 | sylan2br 595 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ 𝑥 ≤ 𝑦)) → 𝜒) |
| 43 | 42 | anassrs 467 |
. 2
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑥 ≤ 𝑦) → 𝜒) |
| 44 | 4, 6, 40, 43 | lecasei 11350 |
1
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝜒) |