Proof of Theorem wloglei
Step | Hyp | Ref
| Expression |
1 | | wlogle.3 |
. . . 4
⊢ (𝜑 → 𝑆 ⊆ ℝ) |
2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑆 ⊆ ℝ) |
3 | | simprr 769 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) |
4 | 2, 3 | sseldd 3918 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ ℝ) |
5 | | simprl 767 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑆) |
6 | 2, 5 | sseldd 3918 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ ℝ) |
7 | | vex 3426 |
. . 3
⊢ 𝑥 ∈ V |
8 | | vex 3426 |
. . 3
⊢ 𝑦 ∈ V |
9 | | eleq1w 2821 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝑆 ↔ 𝑥 ∈ 𝑆)) |
10 | | eleq1w 2821 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) |
11 | 9, 10 | bi2anan9 635 |
. . . . . 6
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ↔ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆))) |
12 | 11 | anbi2d 628 |
. . . . 5
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ↔ (𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)))) |
13 | | breq12 5075 |
. . . . . 6
⊢ ((𝑤 = 𝑦 ∧ 𝑧 = 𝑥) → (𝑤 ≤ 𝑧 ↔ 𝑦 ≤ 𝑥)) |
14 | 13 | ancoms 458 |
. . . . 5
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (𝑤 ≤ 𝑧 ↔ 𝑦 ≤ 𝑥)) |
15 | 12, 14 | anbi12d 630 |
. . . 4
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ 𝑤 ≤ 𝑧) ↔ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑦 ≤ 𝑥))) |
16 | | wlogle.1 |
. . . 4
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (𝜓 ↔ 𝜒)) |
17 | 15, 16 | imbi12d 344 |
. . 3
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → ((((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ 𝑤 ≤ 𝑧) → 𝜓) ↔ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑦 ≤ 𝑥) → 𝜒))) |
18 | | vex 3426 |
. . . 4
⊢ 𝑧 ∈ V |
19 | | vex 3426 |
. . . 4
⊢ 𝑤 ∈ V |
20 | | ancom 460 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ↔ (𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆)) |
21 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑆 ↔ 𝑧 ∈ 𝑆)) |
22 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝑆 ↔ 𝑤 ∈ 𝑆)) |
23 | 21, 22 | bi2anan9 635 |
. . . . . . . 8
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → ((𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) ↔ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆))) |
24 | 20, 23 | syl5bb 282 |
. . . . . . 7
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ↔ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆))) |
25 | 24 | anbi2d 628 |
. . . . . 6
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ↔ (𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)))) |
26 | | breq12 5075 |
. . . . . . 7
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧)) |
27 | 26 | ancoms 458 |
. . . . . 6
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧)) |
28 | 25, 27 | anbi12d 630 |
. . . . 5
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑥 ≤ 𝑦) ↔ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ 𝑤 ≤ 𝑧))) |
29 | | equcom 2022 |
. . . . . . 7
⊢ (𝑦 = 𝑧 ↔ 𝑧 = 𝑦) |
30 | | equcom 2022 |
. . . . . . 7
⊢ (𝑥 = 𝑤 ↔ 𝑤 = 𝑥) |
31 | | wlogle.2 |
. . . . . . 7
⊢ ((𝑧 = 𝑦 ∧ 𝑤 = 𝑥) → (𝜓 ↔ 𝜃)) |
32 | 29, 30, 31 | syl2anb 597 |
. . . . . 6
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → (𝜓 ↔ 𝜃)) |
33 | 32 | bicomd 222 |
. . . . 5
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → (𝜃 ↔ 𝜓)) |
34 | 28, 33 | imbi12d 344 |
. . . 4
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → ((((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑥 ≤ 𝑦) → 𝜃) ↔ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ 𝑤 ≤ 𝑧) → 𝜓))) |
35 | | df-3an 1087 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦) ↔ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ 𝑥 ≤ 𝑦)) |
36 | | wloglei.4 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → 𝜃) |
37 | 35, 36 | sylan2br 594 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ 𝑥 ≤ 𝑦)) → 𝜃) |
38 | 37 | anassrs 467 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑥 ≤ 𝑦) → 𝜃) |
39 | 18, 19, 34, 38 | vtocl2 3490 |
. . 3
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ 𝑤 ≤ 𝑧) → 𝜓) |
40 | 7, 8, 17, 39 | vtocl2 3490 |
. 2
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑦 ≤ 𝑥) → 𝜒) |
41 | | wloglei.5 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → 𝜒) |
42 | 35, 41 | sylan2br 594 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ 𝑥 ≤ 𝑦)) → 𝜒) |
43 | 42 | anassrs 467 |
. 2
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑥 ≤ 𝑦) → 𝜒) |
44 | 4, 6, 40, 43 | lecasei 11011 |
1
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝜒) |