MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wloglei Structured version   Visualization version   GIF version

Theorem wloglei 10907
Description: Form of wlogle 10908 where both sides of the equivalence are proven rather than showing that they are equivalent to each other. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
wlogle.1 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝜓𝜒))
wlogle.2 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝜓𝜃))
wlogle.3 (𝜑𝑆 ⊆ ℝ)
wloglei.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜃)
wloglei.5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜒)
Assertion
Ref Expression
wloglei ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝜒)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝜑   𝑤,𝑆,𝑥,𝑦,𝑧   𝜓,𝑥,𝑦   𝜒,𝑤,𝑧
Allowed substitution hints:   𝜓(𝑧,𝑤)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wloglei
StepHypRef Expression
1 wlogle.3 . . . 4 (𝜑𝑆 ⊆ ℝ)
21adantr 474 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 ⊆ ℝ)
3 simprr 763 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
42, 3sseldd 3821 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ ℝ)
5 simprl 761 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
62, 5sseldd 3821 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ ℝ)
7 vex 3400 . . 3 𝑥 ∈ V
8 vex 3400 . . 3 𝑦 ∈ V
9 eleq1w 2841 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝑆𝑥𝑆))
10 eleq1w 2841 . . . . . . 7 (𝑤 = 𝑦 → (𝑤𝑆𝑦𝑆))
119, 10bi2anan9 629 . . . . . 6 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝑧𝑆𝑤𝑆) ↔ (𝑥𝑆𝑦𝑆)))
1211anbi2d 622 . . . . 5 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ↔ (𝜑 ∧ (𝑥𝑆𝑦𝑆))))
13 breq12 4891 . . . . . 6 ((𝑤 = 𝑦𝑧 = 𝑥) → (𝑤𝑧𝑦𝑥))
1413ancoms 452 . . . . 5 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝑤𝑧𝑦𝑥))
1512, 14anbi12d 624 . . . 4 ((𝑧 = 𝑥𝑤 = 𝑦) → (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧) ↔ ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑦𝑥)))
16 wlogle.1 . . . 4 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝜓𝜒))
1715, 16imbi12d 336 . . 3 ((𝑧 = 𝑥𝑤 = 𝑦) → ((((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧) → 𝜓) ↔ (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑦𝑥) → 𝜒)))
18 vex 3400 . . . 4 𝑧 ∈ V
19 vex 3400 . . . 4 𝑤 ∈ V
20 ancom 454 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) ↔ (𝑦𝑆𝑥𝑆))
21 eleq1w 2841 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦𝑆𝑧𝑆))
22 eleq1w 2841 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝑆𝑤𝑆))
2321, 22bi2anan9 629 . . . . . . . 8 ((𝑦 = 𝑧𝑥 = 𝑤) → ((𝑦𝑆𝑥𝑆) ↔ (𝑧𝑆𝑤𝑆)))
2420, 23syl5bb 275 . . . . . . 7 ((𝑦 = 𝑧𝑥 = 𝑤) → ((𝑥𝑆𝑦𝑆) ↔ (𝑧𝑆𝑤𝑆)))
2524anbi2d 622 . . . . . 6 ((𝑦 = 𝑧𝑥 = 𝑤) → ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ↔ (𝜑 ∧ (𝑧𝑆𝑤𝑆))))
26 breq12 4891 . . . . . . 7 ((𝑥 = 𝑤𝑦 = 𝑧) → (𝑥𝑦𝑤𝑧))
2726ancoms 452 . . . . . 6 ((𝑦 = 𝑧𝑥 = 𝑤) → (𝑥𝑦𝑤𝑧))
2825, 27anbi12d 624 . . . . 5 ((𝑦 = 𝑧𝑥 = 𝑤) → (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑥𝑦) ↔ ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧)))
29 equcom 2064 . . . . . . 7 (𝑦 = 𝑧𝑧 = 𝑦)
30 equcom 2064 . . . . . . 7 (𝑥 = 𝑤𝑤 = 𝑥)
31 wlogle.2 . . . . . . 7 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝜓𝜃))
3229, 30, 31syl2anb 591 . . . . . 6 ((𝑦 = 𝑧𝑥 = 𝑤) → (𝜓𝜃))
3332bicomd 215 . . . . 5 ((𝑦 = 𝑧𝑥 = 𝑤) → (𝜃𝜓))
3428, 33imbi12d 336 . . . 4 ((𝑦 = 𝑧𝑥 = 𝑤) → ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑥𝑦) → 𝜃) ↔ (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧) → 𝜓)))
35 df-3an 1073 . . . . . 6 ((𝑥𝑆𝑦𝑆𝑥𝑦) ↔ ((𝑥𝑆𝑦𝑆) ∧ 𝑥𝑦))
36 wloglei.4 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜃)
3735, 36sylan2br 588 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ 𝑥𝑦)) → 𝜃)
3837anassrs 461 . . . 4 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑥𝑦) → 𝜃)
3918, 19, 34, 38vtocl2 3461 . . 3 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧) → 𝜓)
407, 8, 17, 39vtocl2 3461 . 2 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑦𝑥) → 𝜒)
41 wloglei.5 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜒)
4235, 41sylan2br 588 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ 𝑥𝑦)) → 𝜒)
4342anassrs 461 . 2 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑥𝑦) → 𝜒)
444, 6, 40, 43lecasei 10482 1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071  wcel 2106  wss 3791   class class class wbr 4886  cr 10271  cle 10412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-resscn 10329  ax-pre-lttri 10346
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417
This theorem is referenced by:  wlogle  10908  resconn  31827
  Copyright terms: Public domain W3C validator