MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem4 Structured version   Visualization version   GIF version

Theorem fpwwe2lem4 10659
Description: Lemma for fpwwe2 10668. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
Assertion
Ref Expression
fpwwe2lem4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴)
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem4
StepHypRef Expression
1 fpwwe2.2 . . . . 5 (𝜑𝐴𝑉)
21adantr 479 . . . 4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝐴𝑉)
3 simpr1 1191 . . . 4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑋𝐴)
42, 3ssexd 5325 . . 3 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑋 ∈ V)
54, 4xpexd 7754 . . . 4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋 × 𝑋) ∈ V)
6 simpr2 1192 . . . 4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑅 ⊆ (𝑋 × 𝑋))
75, 6ssexd 5325 . . 3 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑅 ∈ V)
84, 7jca 510 . 2 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
9 sseq1 4002 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
10 xpeq12 5703 . . . . . . . 8 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 × 𝑥) = (𝑋 × 𝑋))
1110anidms 565 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 × 𝑥) = (𝑋 × 𝑋))
1211sseq2d 4009 . . . . . 6 (𝑥 = 𝑋 → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑟 ⊆ (𝑋 × 𝑋)))
13 weeq2 5667 . . . . . 6 (𝑥 = 𝑋 → (𝑟 We 𝑥𝑟 We 𝑋))
149, 12, 133anbi123d 1432 . . . . 5 (𝑥 = 𝑋 → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝑋𝐴𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋)))
1514anbi2d 628 . . . 4 (𝑥 = 𝑋 → ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) ↔ (𝜑 ∧ (𝑋𝐴𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋))))
16 oveq1 7426 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐹𝑟) = (𝑋𝐹𝑟))
1716eleq1d 2810 . . . 4 (𝑥 = 𝑋 → ((𝑥𝐹𝑟) ∈ 𝐴 ↔ (𝑋𝐹𝑟) ∈ 𝐴))
1815, 17imbi12d 343 . . 3 (𝑥 = 𝑋 → (((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑋𝐴𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋)) → (𝑋𝐹𝑟) ∈ 𝐴)))
19 sseq1 4002 . . . . . 6 (𝑟 = 𝑅 → (𝑟 ⊆ (𝑋 × 𝑋) ↔ 𝑅 ⊆ (𝑋 × 𝑋)))
20 weeq1 5666 . . . . . 6 (𝑟 = 𝑅 → (𝑟 We 𝑋𝑅 We 𝑋))
2119, 203anbi23d 1435 . . . . 5 (𝑟 = 𝑅 → ((𝑋𝐴𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋) ↔ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)))
2221anbi2d 628 . . . 4 (𝑟 = 𝑅 → ((𝜑 ∧ (𝑋𝐴𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋)) ↔ (𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋))))
23 oveq2 7427 . . . . 5 (𝑟 = 𝑅 → (𝑋𝐹𝑟) = (𝑋𝐹𝑅))
2423eleq1d 2810 . . . 4 (𝑟 = 𝑅 → ((𝑋𝐹𝑟) ∈ 𝐴 ↔ (𝑋𝐹𝑅) ∈ 𝐴))
2522, 24imbi12d 343 . . 3 (𝑟 = 𝑅 → (((𝜑 ∧ (𝑋𝐴𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋)) → (𝑋𝐹𝑟) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴)))
26 fpwwe2.3 . . 3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
2718, 25, 26vtocl2g 3553 . 2 ((𝑋 ∈ V ∧ 𝑅 ∈ V) → ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴))
288, 27mpcom 38 1 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  [wsbc 3773  cin 3943  wss 3944  {csn 4630  {copab 5211   We wwe 5632   × cxp 5676  ccnv 5677  cima 5681  (class class class)co 7419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-iota 6501  df-fv 6557  df-ov 7422
This theorem is referenced by:  fpwwe2lem12  10667
  Copyright terms: Public domain W3C validator