MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem4 Structured version   Visualization version   GIF version

Theorem fpwwe2lem4 10594
Description: Lemma for fpwwe2 10603. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.) (Proof shortened by Matthew House, 10-Sep-2025.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
Assertion
Ref Expression
fpwwe2lem4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴)
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem4
StepHypRef Expression
1 fpwwe2.2 . . . . 5 (𝜑𝐴𝑉)
21adantr 480 . . . 4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝐴𝑉)
3 simpr1 1195 . . . 4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑋𝐴)
42, 3ssexd 5282 . . 3 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑋 ∈ V)
54, 4xpexd 7730 . . . 4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋 × 𝑋) ∈ V)
6 simpr2 1196 . . . 4 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑅 ⊆ (𝑋 × 𝑋))
75, 6ssexd 5282 . . 3 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑅 ∈ V)
8 simpl 482 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑥 = 𝑋)
98sseq1d 3981 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑥𝐴𝑋𝐴))
10 simpr 484 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑟 = 𝑅)
118sqxpeqd 5673 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑥 × 𝑥) = (𝑋 × 𝑋))
1210, 11sseq12d 3983 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑅 ⊆ (𝑋 × 𝑋)))
1310, 8weeq12d 5630 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 We 𝑥𝑅 We 𝑋))
149, 12, 133anbi123d 1438 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)))
15 oveq12 7399 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑥𝐹𝑟) = (𝑋𝐹𝑅))
1615eleq1d 2814 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑥𝐹𝑟) ∈ 𝐴 ↔ (𝑋𝐹𝑅) ∈ 𝐴))
1714, 16imbi12d 344 . . 3 ((𝑥 = 𝑋𝑟 = 𝑅) → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥𝐹𝑟) ∈ 𝐴) ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋) → (𝑋𝐹𝑅) ∈ 𝐴)))
18 fpwwe2.3 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
1918ex 412 . . . 4 (𝜑 → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥𝐹𝑟) ∈ 𝐴))
2019adantr 480 . . 3 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥𝐹𝑟) ∈ 𝐴))
214, 7, 17, 20vtocl2d 3531 . 2 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋) → (𝑋𝐹𝑅) ∈ 𝐴))
2221syldbl2 841 1 ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  [wsbc 3756  cin 3916  wss 3917  {csn 4592  {copab 5172   We wwe 5593   × cxp 5639  ccnv 5640  cima 5644  (class class class)co 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  fpwwe2lem12  10602
  Copyright terms: Public domain W3C validator