Proof of Theorem fpwwe2lem4
Step | Hyp | Ref
| Expression |
1 | | fpwwe2.2 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝐴 ∈ 𝑉) |
3 | | simpr1 1194 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑋 ⊆ 𝐴) |
4 | 2, 3 | ssexd 5342 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑋 ∈ V) |
5 | 4, 4 | xpexd 7786 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋 × 𝑋) ∈ V) |
6 | | simpr2 1195 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑅 ⊆ (𝑋 × 𝑋)) |
7 | 5, 6 | ssexd 5342 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑅 ∈ V) |
8 | | simpl 482 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → 𝑥 = 𝑋) |
9 | 8 | sseq1d 4040 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) |
10 | | simpr 484 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
11 | 8 | sqxpeqd 5732 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑥 × 𝑥) = (𝑋 × 𝑋)) |
12 | 10, 11 | sseq12d 4042 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑅 ⊆ (𝑋 × 𝑋))) |
13 | 10, 8 | weeq12d 5689 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑟 We 𝑥 ↔ 𝑅 We 𝑋)) |
14 | 9, 12, 13 | 3anbi123d 1436 |
. . . 4
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋))) |
15 | | oveq12 7457 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑥𝐹𝑟) = (𝑋𝐹𝑅)) |
16 | 15 | eleq1d 2829 |
. . . 4
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑥𝐹𝑟) ∈ 𝐴 ↔ (𝑋𝐹𝑅) ∈ 𝐴)) |
17 | 14, 16 | imbi12d 344 |
. . 3
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥𝐹𝑟) ∈ 𝐴) ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋) → (𝑋𝐹𝑅) ∈ 𝐴))) |
18 | | fpwwe2.3 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
19 | 18 | ex 412 |
. . . 4
⊢ (𝜑 → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥𝐹𝑟) ∈ 𝐴)) |
20 | 19 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥𝐹𝑟) ∈ 𝐴)) |
21 | 4, 7, 17, 20 | vtocl2d 3574 |
. 2
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋) → (𝑋𝐹𝑅) ∈ 𝐴)) |
22 | 21 | syldbl2 840 |
1
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴) |