Proof of Theorem fpwwe2lem4
Step | Hyp | Ref
| Expression |
1 | | fpwwe2.2 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝐴 ∈ 𝑉) |
3 | | simpr1 1193 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑋 ⊆ 𝐴) |
4 | 2, 3 | ssexd 5248 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑋 ∈ V) |
5 | 4, 4 | xpexd 7601 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋 × 𝑋) ∈ V) |
6 | | simpr2 1194 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑅 ⊆ (𝑋 × 𝑋)) |
7 | 5, 6 | ssexd 5248 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → 𝑅 ∈ V) |
8 | 4, 7 | jca 512 |
. 2
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋 ∈ V ∧ 𝑅 ∈ V)) |
9 | | sseq1 3946 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) |
10 | | xpeq12 5614 |
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑥 = 𝑋) → (𝑥 × 𝑥) = (𝑋 × 𝑋)) |
11 | 10 | anidms 567 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑥 × 𝑥) = (𝑋 × 𝑋)) |
12 | 11 | sseq2d 3953 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑟 ⊆ (𝑋 × 𝑋))) |
13 | | weeq2 5578 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑟 We 𝑥 ↔ 𝑟 We 𝑋)) |
14 | 9, 12, 13 | 3anbi123d 1435 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝑋 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋))) |
15 | 14 | anbi2d 629 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) ↔ (𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋)))) |
16 | | oveq1 7282 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑥𝐹𝑟) = (𝑋𝐹𝑟)) |
17 | 16 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝑥𝐹𝑟) ∈ 𝐴 ↔ (𝑋𝐹𝑟) ∈ 𝐴)) |
18 | 15, 17 | imbi12d 345 |
. . 3
⊢ (𝑥 = 𝑋 → (((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋)) → (𝑋𝐹𝑟) ∈ 𝐴))) |
19 | | sseq1 3946 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (𝑟 ⊆ (𝑋 × 𝑋) ↔ 𝑅 ⊆ (𝑋 × 𝑋))) |
20 | | weeq1 5577 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (𝑟 We 𝑋 ↔ 𝑅 We 𝑋)) |
21 | 19, 20 | 3anbi23d 1438 |
. . . . 5
⊢ (𝑟 = 𝑅 → ((𝑋 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋) ↔ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋))) |
22 | 21 | anbi2d 629 |
. . . 4
⊢ (𝑟 = 𝑅 → ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋)) ↔ (𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)))) |
23 | | oveq2 7283 |
. . . . 5
⊢ (𝑟 = 𝑅 → (𝑋𝐹𝑟) = (𝑋𝐹𝑅)) |
24 | 23 | eleq1d 2823 |
. . . 4
⊢ (𝑟 = 𝑅 → ((𝑋𝐹𝑟) ∈ 𝐴 ↔ (𝑋𝐹𝑅) ∈ 𝐴)) |
25 | 22, 24 | imbi12d 345 |
. . 3
⊢ (𝑟 = 𝑅 → (((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑋 × 𝑋) ∧ 𝑟 We 𝑋)) → (𝑋𝐹𝑟) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴))) |
26 | | fpwwe2.3 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
27 | 18, 25, 26 | vtocl2g 3510 |
. 2
⊢ ((𝑋 ∈ V ∧ 𝑅 ∈ V) → ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴)) |
28 | 8, 27 | mpcom 38 |
1
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴) |