| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocld | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| vtocld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| vtocld.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| vtocld.3 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| vtocld | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | elisset 2817 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) |
| 4 | vtocld.3 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) |
| 6 | vtocld.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 7 | 5, 6 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜒) |
| 8 | 3, 7 | exlimddv 1935 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-clel 2810 |
| This theorem is referenced by: vtocl2d 3546 lmatfval 33850 lmatcl 33852 bj-elabd2ALT 36948 indstrd 42211 dvgrat 44303 dfatbrafv2b 47241 fnbrafv2b 47244 |
| Copyright terms: Public domain | W3C validator |