Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtocld | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-10 2139, ax-11 2156, ax-12 2173. (Revised by SN, 2-Sep-2024.) |
Ref | Expression |
---|---|
vtocld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vtocld.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
vtocld.3 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
vtocld | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | elisset 2820 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) |
4 | vtocld.3 | . . . 4 ⊢ (𝜑 → 𝜓) | |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) |
6 | vtocld.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
7 | 5, 6 | mpbid 231 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜒) |
8 | 3, 7 | exlimddv 1939 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: vtocl2d 3486 lmatfval 31666 lmatcl 31668 bj-elabd2ALT 35040 dvgrat 41819 dfatbrafv2b 44624 fnbrafv2b 44627 |
Copyright terms: Public domain | W3C validator |