MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocld Structured version   Visualization version   GIF version

Theorem vtocld 3573
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-10 2141, ax-11 2158, ax-12 2178. (Revised by SN, 2-Sep-2024.)
Hypotheses
Ref Expression
vtocld.1 (𝜑𝐴𝑉)
vtocld.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
vtocld.3 (𝜑𝜓)
Assertion
Ref Expression
vtocld (𝜑𝜒)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem vtocld
StepHypRef Expression
1 vtocld.1 . . 3 (𝜑𝐴𝑉)
2 elisset 2826 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
31, 2syl 17 . 2 (𝜑 → ∃𝑥 𝑥 = 𝐴)
4 vtocld.3 . . . 4 (𝜑𝜓)
54adantr 480 . . 3 ((𝜑𝑥 = 𝐴) → 𝜓)
6 vtocld.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
75, 6mpbid 232 . 2 ((𝜑𝑥 = 𝐴) → 𝜒)
83, 7exlimddv 1934 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-clel 2819
This theorem is referenced by:  vtocl2d  3574  lmatfval  33760  lmatcl  33762  bj-elabd2ALT  36891  indstrd  42150  dvgrat  44281  dfatbrafv2b  47160  fnbrafv2b  47163
  Copyright terms: Public domain W3C validator