![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtocld | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
vtocld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vtocld.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
vtocld.3 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
vtocld | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | vtocld.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | vtocld.3 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | nfv 1957 | . 2 ⊢ Ⅎ𝑥𝜑 | |
5 | nfcvd 2935 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
6 | nfvd 1958 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
7 | 1, 2, 3, 4, 5, 6 | vtocldf 3457 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-v 3400 |
This theorem is referenced by: lmatfval 30478 lmatcl 30480 dvgrat 39471 dfatbrafv2b 42290 fnbrafv2b 42293 |
Copyright terms: Public domain | W3C validator |