Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submateq Structured version   Visualization version   GIF version

Theorem submateq 33319
Description: Sufficient condition for two submatrices to be equal. (Contributed by Thierry Arnoux, 25-Aug-2020.)
Hypotheses
Ref Expression
submateq.a 𝐴 = ((1...𝑁) Mat 𝑅)
submateq.b 𝐵 = (Base‘𝐴)
submateq.n (𝜑𝑁 ∈ ℕ)
submateq.i (𝜑𝐼 ∈ (1...𝑁))
submateq.j (𝜑𝐽 ∈ (1...𝑁))
submateq.e (𝜑𝐸𝐵)
submateq.f (𝜑𝐹𝐵)
submateq.1 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗))
Assertion
Ref Expression
submateq (𝜑 → (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽))
Distinct variable groups:   𝑖,𝐸,𝑗   𝑖,𝐹,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑁,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑅(𝑖,𝑗)

Proof of Theorem submateq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 768 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑥 ∈ (1...(𝑁 − 1)))
2 submateq.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
32ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → 𝑁 ∈ ℕ)
4 submateq.i . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (1...𝑁))
54ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → 𝐼 ∈ (1...𝑁))
6 simplr 766 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → 𝑥 ∈ (1...(𝑁 − 1)))
7 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → 𝐼𝑥)
83, 5, 6, 7submateqlem1 33317 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → (𝑥 ∈ (𝐼...𝑁) ∧ (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼})))
98simprd 495 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}))
101, 9syldanl 601 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) → (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}))
1110adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}))
12 simprr 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑦 ∈ (1...(𝑁 − 1)))
132ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → 𝑁 ∈ ℕ)
14 submateq.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (1...𝑁))
1514ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → 𝐽 ∈ (1...𝑁))
16 simplr 766 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → 𝑦 ∈ (1...(𝑁 − 1)))
17 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → 𝐽𝑦)
1813, 15, 16, 17submateqlem1 33317 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → (𝑦 ∈ (𝐽...𝑁) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})))
1918simprd 495 . . . . . . . . . 10 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))
2012, 19syldanl 601 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐽𝑦) → (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))
2120adantlr 712 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))
2211, 21jca 511 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → ((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})))
23 ovexd 7440 . . . . . . . . 9 (𝜑 → (𝑥 + 1) ∈ V)
24 ovexd 7440 . . . . . . . . 9 (𝜑 → (𝑦 + 1) ∈ V)
25 simpl 482 . . . . . . . . . . . 12 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → 𝑖 = (𝑥 + 1))
2625eleq1d 2812 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼})))
27 simpr 484 . . . . . . . . . . . 12 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → 𝑗 = (𝑦 + 1))
2827eleq1d 2812 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (𝑗 ∈ ((1...𝑁) ∖ {𝐽}) ↔ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})))
2926, 28anbi12d 630 . . . . . . . . . 10 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) ↔ ((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))))
30 oveq12 7414 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (𝑖𝐸𝑗) = ((𝑥 + 1)𝐸(𝑦 + 1)))
31 oveq12 7414 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (𝑖𝐹𝑗) = ((𝑥 + 1)𝐹(𝑦 + 1)))
3230, 31eqeq12d 2742 . . . . . . . . . 10 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → ((𝑖𝐸𝑗) = (𝑖𝐹𝑗) ↔ ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1))))
3329, 32imbi12d 344 . . . . . . . . 9 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ↔ (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1)))))
34 submateq.1 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗))
35343expib 1119 . . . . . . . . 9 (𝜑 → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)))
3623, 24, 33, 35vtocl2d 3544 . . . . . . . 8 (𝜑 → (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1))))
3736ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1))))
3822, 37mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1)))
39 eqid 2726 . . . . . . 7 (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐸)𝐽)
402ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝑁 ∈ ℕ)
414ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝐼 ∈ (1...𝑁))
4214ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝐽 ∈ (1...𝑁))
43 submateq.e . . . . . . . . 9 (𝜑𝐸𝐵)
44 submateq.a . . . . . . . . . 10 𝐴 = ((1...𝑁) Mat 𝑅)
45 eqid 2726 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
46 submateq.b . . . . . . . . . 10 𝐵 = (Base‘𝐴)
4744, 45, 46matbas2i 22279 . . . . . . . . 9 (𝐸𝐵𝐸 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
4843, 47syl 17 . . . . . . . 8 (𝜑𝐸 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
4948ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝐸 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
508simpld 494 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → 𝑥 ∈ (𝐼...𝑁))
511, 50syldanl 601 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) → 𝑥 ∈ (𝐼...𝑁))
5251adantr 480 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝑥 ∈ (𝐼...𝑁))
5318simpld 494 . . . . . . . . 9 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → 𝑦 ∈ (𝐽...𝑁))
5412, 53syldanl 601 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐽𝑦) → 𝑦 ∈ (𝐽...𝑁))
5554adantlr 712 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝑦 ∈ (𝐽...𝑁))
5639, 40, 40, 41, 42, 49, 52, 55smatbr 33311 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = ((𝑥 + 1)𝐸(𝑦 + 1)))
57 eqid 2726 . . . . . . 7 (𝐼(subMat1‘𝐹)𝐽) = (𝐼(subMat1‘𝐹)𝐽)
58 submateq.f . . . . . . . . 9 (𝜑𝐹𝐵)
5944, 45, 46matbas2i 22279 . . . . . . . . 9 (𝐹𝐵𝐹 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
6058, 59syl 17 . . . . . . . 8 (𝜑𝐹 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
6160ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝐹 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
6257, 40, 40, 41, 42, 61, 52, 55smatbr 33311 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦) = ((𝑥 + 1)𝐹(𝑦 + 1)))
6338, 56, 623eqtr4d 2776 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
6410adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}))
652ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑁 ∈ ℕ)
6614ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝐽 ∈ (1...𝑁))
67 simplr 766 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1...(𝑁 − 1)))
68 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑦 < 𝐽)
6965, 66, 67, 68submateqlem2 33318 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → (𝑦 ∈ (1..^𝐽) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})))
7069simprd 495 . . . . . . . . . 10 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))
7112, 70syldanl 601 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))
7271adantlr 712 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))
7364, 72jca 511 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → ((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})))
74 vex 3472 . . . . . . . . . 10 𝑦 ∈ V
7574a1i 11 . . . . . . . . 9 (𝜑𝑦 ∈ V)
76 simpl 482 . . . . . . . . . . . 12 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → 𝑖 = (𝑥 + 1))
7776eleq1d 2812 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼})))
78 simpr 484 . . . . . . . . . . . 12 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → 𝑗 = 𝑦)
79 eqidd 2727 . . . . . . . . . . . 12 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → ((1...𝑁) ∖ {𝐽}) = ((1...𝑁) ∖ {𝐽}))
8078, 79eleq12d 2821 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (𝑗 ∈ ((1...𝑁) ∖ {𝐽}) ↔ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})))
8177, 80anbi12d 630 . . . . . . . . . 10 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) ↔ ((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))))
82 oveq12 7414 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (𝑖𝐸𝑗) = ((𝑥 + 1)𝐸𝑦))
83 oveq12 7414 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (𝑖𝐹𝑗) = ((𝑥 + 1)𝐹𝑦))
8482, 83eqeq12d 2742 . . . . . . . . . 10 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → ((𝑖𝐸𝑗) = (𝑖𝐹𝑗) ↔ ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦)))
8581, 84imbi12d 344 . . . . . . . . 9 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ↔ (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦))))
8623, 75, 85, 35vtocl2d 3544 . . . . . . . 8 (𝜑 → (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦)))
8786ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦)))
8873, 87mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦))
892ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝑁 ∈ ℕ)
904ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝐼 ∈ (1...𝑁))
9114ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝐽 ∈ (1...𝑁))
9248ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝐸 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
9351adantr 480 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝑥 ∈ (𝐼...𝑁))
9469simpld 494 . . . . . . . . 9 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1..^𝐽))
9512, 94syldanl 601 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1..^𝐽))
9695adantlr 712 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1..^𝐽))
9739, 89, 89, 90, 91, 92, 93, 96smattr 33309 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = ((𝑥 + 1)𝐸𝑦))
9860ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝐹 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
9957, 89, 89, 90, 91, 98, 93, 96smattr 33309 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦) = ((𝑥 + 1)𝐹𝑦))
10088, 97, 993eqtr4d 2776 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
101 fz1ssnn 13538 . . . . . . . . . 10 (1...𝑁) ⊆ ℕ
102101, 14sselid 3975 . . . . . . . . 9 (𝜑𝐽 ∈ ℕ)
103102nnred 12231 . . . . . . . 8 (𝜑𝐽 ∈ ℝ)
104103adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝐽 ∈ ℝ)
105 fz1ssnn 13538 . . . . . . . . 9 (1...(𝑁 − 1)) ⊆ ℕ
106105, 12sselid 3975 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑦 ∈ ℕ)
107106nnred 12231 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑦 ∈ ℝ)
108 lelttric 11325 . . . . . . 7 ((𝐽 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐽𝑦𝑦 < 𝐽))
109104, 107, 108syl2anc 583 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → (𝐽𝑦𝑦 < 𝐽))
110109adantr 480 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) → (𝐽𝑦𝑦 < 𝐽))
11163, 100, 110mpjaodan 955 . . . 4 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
1122ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑁 ∈ ℕ)
1134ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝐼 ∈ (1...𝑁))
114 simplr 766 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1...(𝑁 − 1)))
115 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑥 < 𝐼)
116112, 113, 114, 115submateqlem2 33318 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → (𝑥 ∈ (1..^𝐼) ∧ 𝑥 ∈ ((1...𝑁) ∖ {𝐼})))
117116simprd 495 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ ((1...𝑁) ∖ {𝐼}))
1181, 117syldanl 601 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ ((1...𝑁) ∖ {𝐼}))
119118adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝑥 ∈ ((1...𝑁) ∖ {𝐼}))
12020adantlr 712 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))
121119, 120jca 511 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → (𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})))
122 vex 3472 . . . . . . . . . 10 𝑥 ∈ V
123122a1i 11 . . . . . . . . 9 (𝜑𝑥 ∈ V)
124 simpl 482 . . . . . . . . . . . 12 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → 𝑖 = 𝑥)
125124eleq1d 2812 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ 𝑥 ∈ ((1...𝑁) ∖ {𝐼})))
126 simpr 484 . . . . . . . . . . . 12 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → 𝑗 = (𝑦 + 1))
127126eleq1d 2812 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → (𝑗 ∈ ((1...𝑁) ∖ {𝐽}) ↔ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})))
128125, 127anbi12d 630 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) ↔ (𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))))
129 oveq12 7414 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → (𝑖𝐸𝑗) = (𝑥𝐸(𝑦 + 1)))
130 oveq12 7414 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → (𝑖𝐹𝑗) = (𝑥𝐹(𝑦 + 1)))
131129, 130eqeq12d 2742 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → ((𝑖𝐸𝑗) = (𝑖𝐹𝑗) ↔ (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1))))
132128, 131imbi12d 344 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → (((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ↔ ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1)))))
133123, 24, 132, 35vtocl2d 3544 . . . . . . . 8 (𝜑 → ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1))))
134133ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1))))
135121, 134mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1)))
1362ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝑁 ∈ ℕ)
1374ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝐼 ∈ (1...𝑁))
13814ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝐽 ∈ (1...𝑁))
13948ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝐸 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
140116simpld 494 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1..^𝐼))
1411, 140syldanl 601 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1..^𝐼))
142141adantr 480 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝑥 ∈ (1..^𝐼))
14354adantlr 712 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝑦 ∈ (𝐽...𝑁))
14439, 136, 136, 137, 138, 139, 142, 143smatbl 33310 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥𝐸(𝑦 + 1)))
14560ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝐹 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
14657, 136, 136, 137, 138, 145, 142, 143smatbl 33310 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦) = (𝑥𝐹(𝑦 + 1)))
147135, 144, 1463eqtr4d 2776 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
148118adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑥 ∈ ((1...𝑁) ∖ {𝐼}))
14971adantlr 712 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))
150148, 149jca 511 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})))
151 simpl 482 . . . . . . . . . . . 12 ((𝑖 = 𝑥𝑗 = 𝑦) → 𝑖 = 𝑥)
152151eleq1d 2812 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ 𝑥 ∈ ((1...𝑁) ∖ {𝐼})))
153 simpr 484 . . . . . . . . . . . 12 ((𝑖 = 𝑥𝑗 = 𝑦) → 𝑗 = 𝑦)
154153eleq1d 2812 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑗 ∈ ((1...𝑁) ∖ {𝐽}) ↔ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})))
155152, 154anbi12d 630 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) ↔ (𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))))
156 oveq12 7414 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝐸𝑗) = (𝑥𝐸𝑦))
157 oveq12 7414 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝐹𝑗) = (𝑥𝐹𝑦))
158156, 157eqeq12d 2742 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → ((𝑖𝐸𝑗) = (𝑖𝐹𝑗) ↔ (𝑥𝐸𝑦) = (𝑥𝐹𝑦)))
159155, 158imbi12d 344 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → (((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ↔ ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸𝑦) = (𝑥𝐹𝑦))))
160123, 75, 159, 35vtocl2d 3544 . . . . . . . 8 (𝜑 → ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸𝑦) = (𝑥𝐹𝑦)))
161160ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸𝑦) = (𝑥𝐹𝑦)))
162150, 161mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥𝐸𝑦) = (𝑥𝐹𝑦))
1632ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑁 ∈ ℕ)
1644ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝐼 ∈ (1...𝑁))
16514ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝐽 ∈ (1...𝑁))
16648ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝐸 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
167141adantr 480 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑥 ∈ (1..^𝐼))
16895adantlr 712 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1..^𝐽))
16939, 163, 163, 164, 165, 166, 167, 168smattl 33308 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥𝐸𝑦))
17060ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝐹 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
17157, 163, 163, 164, 165, 170, 167, 168smattl 33308 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦) = (𝑥𝐹𝑦))
172162, 169, 1713eqtr4d 2776 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
173109adantr 480 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) → (𝐽𝑦𝑦 < 𝐽))
174147, 172, 173mpjaodan 955 . . . 4 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
175101, 4sselid 3975 . . . . . . 7 (𝜑𝐼 ∈ ℕ)
176175nnred 12231 . . . . . 6 (𝜑𝐼 ∈ ℝ)
177176adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ ℝ)
178105, 1sselid 3975 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑥 ∈ ℕ)
179178nnred 12231 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑥 ∈ ℝ)
180 lelttric 11325 . . . . 5 ((𝐼 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐼𝑥𝑥 < 𝐼))
181177, 179, 180syl2anc 583 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → (𝐼𝑥𝑥 < 𝐼))
182111, 174, 181mpjaodan 955 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
183182ralrimivva 3194 . 2 (𝜑 → ∀𝑥 ∈ (1...(𝑁 − 1))∀𝑦 ∈ (1...(𝑁 − 1))(𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
184 eqid 2726 . . . 4 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
18544, 46, 184, 39, 2, 4, 14, 43smatcl 33312 . . 3 (𝜑 → (𝐼(subMat1‘𝐸)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
18644, 46, 184, 57, 2, 4, 14, 58smatcl 33312 . . 3 (𝜑 → (𝐼(subMat1‘𝐹)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
187 eqid 2726 . . . 4 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
188187, 184eqmat 22281 . . 3 (((𝐼(subMat1‘𝐸)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)) ∧ (𝐼(subMat1‘𝐹)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → ((𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽) ↔ ∀𝑥 ∈ (1...(𝑁 − 1))∀𝑦 ∈ (1...(𝑁 − 1))(𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦)))
189185, 186, 188syl2anc 583 . 2 (𝜑 → ((𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽) ↔ ∀𝑥 ∈ (1...(𝑁 − 1))∀𝑦 ∈ (1...(𝑁 − 1))(𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦)))
190183, 189mpbird 257 1 (𝜑 → (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  wral 3055  Vcvv 3468  cdif 3940  {csn 4623   class class class wbr 5141   × cxp 5667  cfv 6537  (class class class)co 7405  m cmap 8822  cr 11111  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448  cn 12216  ...cfz 13490  ..^cfzo 13633  Basecbs 17153   Mat cmat 22262  subMat1csmat 33303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13491  df-fzo 13634  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-hom 17230  df-cco 17231  df-0g 17396  df-prds 17402  df-pws 17404  df-sra 21021  df-rgmod 21022  df-dsmm 21627  df-frlm 21642  df-mat 22263  df-smat 33304
This theorem is referenced by:  submatminr1  33320
  Copyright terms: Public domain W3C validator