| Step | Hyp | Ref
| Expression |
| 1 | | simprl 771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑥 ∈ (1...(𝑁 − 1))) |
| 2 | | submateq.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 3 | 2 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼 ≤ 𝑥) → 𝑁 ∈ ℕ) |
| 4 | | submateq.i |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
| 5 | 4 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼 ≤ 𝑥) → 𝐼 ∈ (1...𝑁)) |
| 6 | | simplr 769 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼 ≤ 𝑥) → 𝑥 ∈ (1...(𝑁 − 1))) |
| 7 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼 ≤ 𝑥) → 𝐼 ≤ 𝑥) |
| 8 | 3, 5, 6, 7 | submateqlem1 33806 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼 ≤ 𝑥) → (𝑥 ∈ (𝐼...𝑁) ∧ (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}))) |
| 9 | 8 | simprd 495 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼 ≤ 𝑥) → (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼})) |
| 10 | 1, 9 | syldanl 602 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) → (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼})) |
| 11 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼})) |
| 12 | | simprr 773 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑦 ∈ (1...(𝑁 − 1))) |
| 13 | 2 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽 ≤ 𝑦) → 𝑁 ∈ ℕ) |
| 14 | | submateq.j |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
| 15 | 14 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽 ≤ 𝑦) → 𝐽 ∈ (1...𝑁)) |
| 16 | | simplr 769 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽 ≤ 𝑦) → 𝑦 ∈ (1...(𝑁 − 1))) |
| 17 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽 ≤ 𝑦) → 𝐽 ≤ 𝑦) |
| 18 | 13, 15, 16, 17 | submateqlem1 33806 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽 ≤ 𝑦) → (𝑦 ∈ (𝐽...𝑁) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))) |
| 19 | 18 | simprd 495 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽 ≤ 𝑦) → (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) |
| 20 | 12, 19 | syldanl 602 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐽 ≤ 𝑦) → (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) |
| 21 | 20 | adantlr 715 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) |
| 22 | 11, 21 | jca 511 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → ((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))) |
| 23 | | ovexd 7466 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 + 1) ∈ V) |
| 24 | | ovexd 7466 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 + 1) ∈ V) |
| 25 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → 𝑖 = (𝑥 + 1)) |
| 26 | 25 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}))) |
| 27 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → 𝑗 = (𝑦 + 1)) |
| 28 | 27 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (𝑗 ∈ ((1...𝑁) ∖ {𝐽}) ↔ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))) |
| 29 | 26, 28 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) ↔ ((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})))) |
| 30 | | oveq12 7440 |
. . . . . . . . . . 11
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (𝑖𝐸𝑗) = ((𝑥 + 1)𝐸(𝑦 + 1))) |
| 31 | | oveq12 7440 |
. . . . . . . . . . 11
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (𝑖𝐹𝑗) = ((𝑥 + 1)𝐹(𝑦 + 1))) |
| 32 | 30, 31 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → ((𝑖𝐸𝑗) = (𝑖𝐹𝑗) ↔ ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1)))) |
| 33 | 29, 32 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ↔ (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1))))) |
| 34 | | submateq.1 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) |
| 35 | 34 | 3expib 1123 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗))) |
| 36 | 23, 24, 33, 35 | vtocl2d 3562 |
. . . . . . . 8
⊢ (𝜑 → (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1)))) |
| 37 | 36 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1)))) |
| 38 | 22, 37 | mpd 15 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1))) |
| 39 | | eqid 2737 |
. . . . . . 7
⊢ (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐸)𝐽) |
| 40 | 2 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → 𝑁 ∈ ℕ) |
| 41 | 4 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → 𝐼 ∈ (1...𝑁)) |
| 42 | 14 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → 𝐽 ∈ (1...𝑁)) |
| 43 | | submateq.e |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| 44 | | submateq.a |
. . . . . . . . . 10
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
| 45 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 46 | | submateq.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐴) |
| 47 | 44, 45, 46 | matbas2i 22428 |
. . . . . . . . 9
⊢ (𝐸 ∈ 𝐵 → 𝐸 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 48 | 43, 47 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 49 | 48 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → 𝐸 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 50 | 8 | simpld 494 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼 ≤ 𝑥) → 𝑥 ∈ (𝐼...𝑁)) |
| 51 | 1, 50 | syldanl 602 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) → 𝑥 ∈ (𝐼...𝑁)) |
| 52 | 51 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → 𝑥 ∈ (𝐼...𝑁)) |
| 53 | 18 | simpld 494 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽 ≤ 𝑦) → 𝑦 ∈ (𝐽...𝑁)) |
| 54 | 12, 53 | syldanl 602 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐽 ≤ 𝑦) → 𝑦 ∈ (𝐽...𝑁)) |
| 55 | 54 | adantlr 715 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → 𝑦 ∈ (𝐽...𝑁)) |
| 56 | 39, 40, 40, 41, 42, 49, 52, 55 | smatbr 33800 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = ((𝑥 + 1)𝐸(𝑦 + 1))) |
| 57 | | eqid 2737 |
. . . . . . 7
⊢ (𝐼(subMat1‘𝐹)𝐽) = (𝐼(subMat1‘𝐹)𝐽) |
| 58 | | submateq.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 59 | 44, 45, 46 | matbas2i 22428 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 60 | 58, 59 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 61 | 60 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → 𝐹 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 62 | 57, 40, 40, 41, 42, 61, 52, 55 | smatbr 33800 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦) = ((𝑥 + 1)𝐹(𝑦 + 1))) |
| 63 | 38, 56, 62 | 3eqtr4d 2787 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝐽 ≤ 𝑦) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦)) |
| 64 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼})) |
| 65 | 2 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑁 ∈ ℕ) |
| 66 | 14 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝐽 ∈ (1...𝑁)) |
| 67 | | simplr 769 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1...(𝑁 − 1))) |
| 68 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑦 < 𝐽) |
| 69 | 65, 66, 67, 68 | submateqlem2 33807 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → (𝑦 ∈ (1..^𝐽) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))) |
| 70 | 69 | simprd 495 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) |
| 71 | 12, 70 | syldanl 602 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) |
| 72 | 71 | adantlr 715 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) |
| 73 | 64, 72 | jca 511 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → ((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))) |
| 74 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 75 | 74 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝑦 ∈ V) |
| 76 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → 𝑖 = (𝑥 + 1)) |
| 77 | 76 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}))) |
| 78 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → 𝑗 = 𝑦) |
| 79 | | eqidd 2738 |
. . . . . . . . . . . 12
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → ((1...𝑁) ∖ {𝐽}) = ((1...𝑁) ∖ {𝐽})) |
| 80 | 78, 79 | eleq12d 2835 |
. . . . . . . . . . 11
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (𝑗 ∈ ((1...𝑁) ∖ {𝐽}) ↔ 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))) |
| 81 | 77, 80 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) ↔ ((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})))) |
| 82 | | oveq12 7440 |
. . . . . . . . . . 11
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (𝑖𝐸𝑗) = ((𝑥 + 1)𝐸𝑦)) |
| 83 | | oveq12 7440 |
. . . . . . . . . . 11
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (𝑖𝐹𝑗) = ((𝑥 + 1)𝐹𝑦)) |
| 84 | 82, 83 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → ((𝑖𝐸𝑗) = (𝑖𝐹𝑗) ↔ ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦))) |
| 85 | 81, 84 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ↔ (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦)))) |
| 86 | 23, 75, 85, 35 | vtocl2d 3562 |
. . . . . . . 8
⊢ (𝜑 → (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦))) |
| 87 | 86 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦))) |
| 88 | 73, 87 | mpd 15 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦)) |
| 89 | 2 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → 𝑁 ∈ ℕ) |
| 90 | 4 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → 𝐼 ∈ (1...𝑁)) |
| 91 | 14 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → 𝐽 ∈ (1...𝑁)) |
| 92 | 48 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → 𝐸 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 93 | 51 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → 𝑥 ∈ (𝐼...𝑁)) |
| 94 | 69 | simpld 494 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1..^𝐽)) |
| 95 | 12, 94 | syldanl 602 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1..^𝐽)) |
| 96 | 95 | adantlr 715 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1..^𝐽)) |
| 97 | 39, 89, 89, 90, 91, 92, 93, 96 | smattr 33798 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = ((𝑥 + 1)𝐸𝑦)) |
| 98 | 60 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → 𝐹 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 99 | 57, 89, 89, 90, 91, 98, 93, 96 | smattr 33798 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦) = ((𝑥 + 1)𝐹𝑦)) |
| 100 | 88, 97, 99 | 3eqtr4d 2787 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦)) |
| 101 | | fz1ssnn 13595 |
. . . . . . . . . 10
⊢
(1...𝑁) ⊆
ℕ |
| 102 | 101, 14 | sselid 3981 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ ℕ) |
| 103 | 102 | nnred 12281 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 104 | 103 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝐽 ∈ ℝ) |
| 105 | | fz1ssnn 13595 |
. . . . . . . . 9
⊢
(1...(𝑁 − 1))
⊆ ℕ |
| 106 | 105, 12 | sselid 3981 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑦 ∈ ℕ) |
| 107 | 106 | nnred 12281 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑦 ∈ ℝ) |
| 108 | | lelttric 11368 |
. . . . . . 7
⊢ ((𝐽 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐽 ≤ 𝑦 ∨ 𝑦 < 𝐽)) |
| 109 | 104, 107,
108 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → (𝐽 ≤ 𝑦 ∨ 𝑦 < 𝐽)) |
| 110 | 109 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) → (𝐽 ≤ 𝑦 ∨ 𝑦 < 𝐽)) |
| 111 | 63, 100, 110 | mpjaodan 961 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼 ≤ 𝑥) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦)) |
| 112 | 2 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑁 ∈ ℕ) |
| 113 | 4 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝐼 ∈ (1...𝑁)) |
| 114 | | simplr 769 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1...(𝑁 − 1))) |
| 115 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑥 < 𝐼) |
| 116 | 112, 113,
114, 115 | submateqlem2 33807 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → (𝑥 ∈ (1..^𝐼) ∧ 𝑥 ∈ ((1...𝑁) ∖ {𝐼}))) |
| 117 | 116 | simprd 495 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ ((1...𝑁) ∖ {𝐼})) |
| 118 | 1, 117 | syldanl 602 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ ((1...𝑁) ∖ {𝐼})) |
| 119 | 118 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → 𝑥 ∈ ((1...𝑁) ∖ {𝐼})) |
| 120 | 20 | adantlr 715 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) |
| 121 | 119, 120 | jca 511 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → (𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))) |
| 122 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 123 | 122 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝑥 ∈ V) |
| 124 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = (𝑦 + 1)) → 𝑖 = 𝑥) |
| 125 | 124 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = (𝑦 + 1)) → (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ 𝑥 ∈ ((1...𝑁) ∖ {𝐼}))) |
| 126 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = (𝑦 + 1)) → 𝑗 = (𝑦 + 1)) |
| 127 | 126 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = (𝑦 + 1)) → (𝑗 ∈ ((1...𝑁) ∖ {𝐽}) ↔ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))) |
| 128 | 125, 127 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = (𝑦 + 1)) → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) ↔ (𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})))) |
| 129 | | oveq12 7440 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = (𝑦 + 1)) → (𝑖𝐸𝑗) = (𝑥𝐸(𝑦 + 1))) |
| 130 | | oveq12 7440 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = (𝑦 + 1)) → (𝑖𝐹𝑗) = (𝑥𝐹(𝑦 + 1))) |
| 131 | 129, 130 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = (𝑦 + 1)) → ((𝑖𝐸𝑗) = (𝑖𝐹𝑗) ↔ (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1)))) |
| 132 | 128, 131 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = (𝑦 + 1)) → (((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ↔ ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1))))) |
| 133 | 123, 24, 132, 35 | vtocl2d 3562 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1)))) |
| 134 | 133 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1)))) |
| 135 | 121, 134 | mpd 15 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1))) |
| 136 | 2 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → 𝑁 ∈ ℕ) |
| 137 | 4 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → 𝐼 ∈ (1...𝑁)) |
| 138 | 14 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → 𝐽 ∈ (1...𝑁)) |
| 139 | 48 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → 𝐸 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 140 | 116 | simpld 494 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1..^𝐼)) |
| 141 | 1, 140 | syldanl 602 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1..^𝐼)) |
| 142 | 141 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → 𝑥 ∈ (1..^𝐼)) |
| 143 | 54 | adantlr 715 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → 𝑦 ∈ (𝐽...𝑁)) |
| 144 | 39, 136, 136, 137, 138, 139, 142, 143 | smatbl 33799 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥𝐸(𝑦 + 1))) |
| 145 | 60 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → 𝐹 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 146 | 57, 136, 136, 137, 138, 145, 142, 143 | smatbl 33799 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦) = (𝑥𝐹(𝑦 + 1))) |
| 147 | 135, 144,
146 | 3eqtr4d 2787 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽 ≤ 𝑦) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦)) |
| 148 | 118 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑥 ∈ ((1...𝑁) ∖ {𝐼})) |
| 149 | 71 | adantlr 715 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) |
| 150 | 148, 149 | jca 511 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))) |
| 151 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → 𝑖 = 𝑥) |
| 152 | 151 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ 𝑥 ∈ ((1...𝑁) ∖ {𝐼}))) |
| 153 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → 𝑗 = 𝑦) |
| 154 | 153 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → (𝑗 ∈ ((1...𝑁) ∖ {𝐽}) ↔ 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))) |
| 155 | 152, 154 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) ↔ (𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})))) |
| 156 | | oveq12 7440 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → (𝑖𝐸𝑗) = (𝑥𝐸𝑦)) |
| 157 | | oveq12 7440 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → (𝑖𝐹𝑗) = (𝑥𝐹𝑦)) |
| 158 | 156, 157 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → ((𝑖𝐸𝑗) = (𝑖𝐹𝑗) ↔ (𝑥𝐸𝑦) = (𝑥𝐹𝑦))) |
| 159 | 155, 158 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑦) → (((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ↔ ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸𝑦) = (𝑥𝐹𝑦)))) |
| 160 | 123, 75, 159, 35 | vtocl2d 3562 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸𝑦) = (𝑥𝐹𝑦))) |
| 161 | 160 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸𝑦) = (𝑥𝐹𝑦))) |
| 162 | 150, 161 | mpd 15 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥𝐸𝑦) = (𝑥𝐹𝑦)) |
| 163 | 2 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑁 ∈ ℕ) |
| 164 | 4 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝐼 ∈ (1...𝑁)) |
| 165 | 14 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝐽 ∈ (1...𝑁)) |
| 166 | 48 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝐸 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 167 | 141 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑥 ∈ (1..^𝐼)) |
| 168 | 95 | adantlr 715 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1..^𝐽)) |
| 169 | 39, 163, 163, 164, 165, 166, 167, 168 | smattl 33797 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥𝐸𝑦)) |
| 170 | 60 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝐹 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
| 171 | 57, 163, 163, 164, 165, 170, 167, 168 | smattl 33797 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦) = (𝑥𝐹𝑦)) |
| 172 | 162, 169,
171 | 3eqtr4d 2787 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦)) |
| 173 | 109 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) → (𝐽 ≤ 𝑦 ∨ 𝑦 < 𝐽)) |
| 174 | 147, 172,
173 | mpjaodan 961 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦)) |
| 175 | 101, 4 | sselid 3981 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 176 | 175 | nnred 12281 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ ℝ) |
| 177 | 176 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ ℝ) |
| 178 | 105, 1 | sselid 3981 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑥 ∈ ℕ) |
| 179 | 178 | nnred 12281 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑥 ∈ ℝ) |
| 180 | | lelttric 11368 |
. . . . 5
⊢ ((𝐼 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐼 ≤ 𝑥 ∨ 𝑥 < 𝐼)) |
| 181 | 177, 179,
180 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → (𝐼 ≤ 𝑥 ∨ 𝑥 < 𝐼)) |
| 182 | 111, 174,
181 | mpjaodan 961 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦)) |
| 183 | 182 | ralrimivva 3202 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (1...(𝑁 − 1))∀𝑦 ∈ (1...(𝑁 − 1))(𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦)) |
| 184 | | eqid 2737 |
. . . 4
⊢
(Base‘((1...(𝑁
− 1)) Mat 𝑅)) =
(Base‘((1...(𝑁
− 1)) Mat 𝑅)) |
| 185 | 44, 46, 184, 39, 2, 4, 14, 43 | smatcl 33801 |
. . 3
⊢ (𝜑 → (𝐼(subMat1‘𝐸)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
| 186 | 44, 46, 184, 57, 2, 4, 14, 58 | smatcl 33801 |
. . 3
⊢ (𝜑 → (𝐼(subMat1‘𝐹)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
| 187 | | eqid 2737 |
. . . 4
⊢
((1...(𝑁 − 1))
Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅) |
| 188 | 187, 184 | eqmat 22430 |
. . 3
⊢ (((𝐼(subMat1‘𝐸)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)) ∧ (𝐼(subMat1‘𝐹)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → ((𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽) ↔ ∀𝑥 ∈ (1...(𝑁 − 1))∀𝑦 ∈ (1...(𝑁 − 1))(𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))) |
| 189 | 185, 186,
188 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽) ↔ ∀𝑥 ∈ (1...(𝑁 − 1))∀𝑦 ∈ (1...(𝑁 − 1))(𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))) |
| 190 | 183, 189 | mpbird 257 |
1
⊢ (𝜑 → (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽)) |