Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cplgredgex Structured version   Visualization version   GIF version

Theorem cplgredgex 32982
Description: Any two (distinct) vertices in a complete graph are connected to each other by at least one edge. (Contributed by BTernaryTau, 2-Oct-2023.)
Hypotheses
Ref Expression
cplgredgex.1 𝑉 = (Vtx‘𝐺)
cplgredgex.2 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cplgredgex (𝐺 ∈ ComplGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝑒,𝐸   𝑒,𝐺   𝑒,𝑉

Proof of Theorem cplgredgex
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . . 3 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → 𝐴𝑉)
2 simp3 1136 . . 3 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → 𝐵 ∈ (𝑉 ∖ {𝐴}))
3 eleq1 2826 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝑉𝐴𝑉))
4 sneq 4568 . . . . . . . . 9 (𝑎 = 𝐴 → {𝑎} = {𝐴})
54difeq2d 4053 . . . . . . . 8 (𝑎 = 𝐴 → (𝑉 ∖ {𝑎}) = (𝑉 ∖ {𝐴}))
65eleq2d 2824 . . . . . . 7 (𝑎 = 𝐴 → (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ 𝑏 ∈ (𝑉 ∖ {𝐴})))
73, 6anbi12d 630 . . . . . 6 (𝑎 = 𝐴 → ((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) ↔ (𝐴𝑉𝑏 ∈ (𝑉 ∖ {𝐴}))))
8 preq1 4666 . . . . . . . 8 (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏})
98sseq1d 3948 . . . . . . 7 (𝑎 = 𝐴 → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝐴, 𝑏} ⊆ 𝑒))
109rexbidv 3225 . . . . . 6 (𝑎 = 𝐴 → (∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝐴, 𝑏} ⊆ 𝑒))
117, 10imbi12d 344 . . . . 5 (𝑎 = 𝐴 → (((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒) ↔ ((𝐴𝑉𝑏 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝑏} ⊆ 𝑒)))
12 eleq1 2826 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 ∈ (𝑉 ∖ {𝐴}) ↔ 𝐵 ∈ (𝑉 ∖ {𝐴})))
1312anbi2d 628 . . . . . 6 (𝑏 = 𝐵 → ((𝐴𝑉𝑏 ∈ (𝑉 ∖ {𝐴})) ↔ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))))
14 preq2 4667 . . . . . . . 8 (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵})
1514sseq1d 3948 . . . . . . 7 (𝑏 = 𝐵 → ({𝐴, 𝑏} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ 𝑒))
1615rexbidv 3225 . . . . . 6 (𝑏 = 𝐵 → (∃𝑒𝐸 {𝐴, 𝑏} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
1713, 16imbi12d 344 . . . . 5 (𝑏 = 𝐵 → (((𝐴𝑉𝑏 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝑏} ⊆ 𝑒) ↔ ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)))
1811, 17sylan9bb 509 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒) ↔ ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)))
19 cplgredgex.1 . . . . . . . 8 𝑉 = (Vtx‘𝐺)
20 cplgredgex.2 . . . . . . . 8 𝐸 = (Edg‘𝐺)
2119, 20iscplgredg 27687 . . . . . . 7 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
2221ibi 266 . . . . . 6 (𝐺 ∈ ComplGraph → ∀𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒)
23 rsp2 3136 . . . . . 6 (∀𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒 → ((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
2422, 23syl 17 . . . . 5 (𝐺 ∈ ComplGraph → ((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
25243ad2ant1 1131 . . . 4 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
261, 2, 18, 25vtocl2d 3486 . . 3 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
271, 2, 26mp2and 695 . 2 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)
28273expib 1120 1 (𝐺 ∈ ComplGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cdif 3880  wss 3883  {csn 4558  {cpr 4560  cfv 6418  Vtxcvtx 27269  Edgcedg 27320  ComplGraphccplgr 27679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-nbgr 27603  df-uvtx 27656  df-cplgr 27681
This theorem is referenced by:  cusgredgex  32983
  Copyright terms: Public domain W3C validator