Step | Hyp | Ref
| Expression |
1 | | simp2 1135 |
. . 3
⊢ ((𝐺 ∈ ComplGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → 𝐴 ∈ 𝑉) |
2 | | simp3 1136 |
. . 3
⊢ ((𝐺 ∈ ComplGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → 𝐵 ∈ (𝑉 ∖ {𝐴})) |
3 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑎 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) |
4 | | sneq 4568 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) |
5 | 4 | difeq2d 4053 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑉 ∖ {𝑎}) = (𝑉 ∖ {𝐴})) |
6 | 5 | eleq2d 2824 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ 𝑏 ∈ (𝑉 ∖ {𝐴}))) |
7 | 3, 6 | anbi12d 630 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) ↔ (𝐴 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝐴})))) |
8 | | preq1 4666 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏}) |
9 | 8 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝐴, 𝑏} ⊆ 𝑒)) |
10 | 9 | rexbidv 3225 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝐴, 𝑏} ⊆ 𝑒)) |
11 | 7, 10 | imbi12d 344 |
. . . . 5
⊢ (𝑎 = 𝐴 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒) ↔ ((𝐴 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒 ∈ 𝐸 {𝐴, 𝑏} ⊆ 𝑒))) |
12 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (𝑏 ∈ (𝑉 ∖ {𝐴}) ↔ 𝐵 ∈ (𝑉 ∖ {𝐴}))) |
13 | 12 | anbi2d 628 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐴 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝐴})) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})))) |
14 | | preq2 4667 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵}) |
15 | 14 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → ({𝐴, 𝑏} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ 𝑒)) |
16 | 15 | rexbidv 3225 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (∃𝑒 ∈ 𝐸 {𝐴, 𝑏} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) |
17 | 13, 16 | imbi12d 344 |
. . . . 5
⊢ (𝑏 = 𝐵 → (((𝐴 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒 ∈ 𝐸 {𝐴, 𝑏} ⊆ 𝑒) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒))) |
18 | 11, 17 | sylan9bb 509 |
. . . 4
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒))) |
19 | | cplgredgex.1 |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
20 | | cplgredgex.2 |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
21 | 19, 20 | iscplgredg 27687 |
. . . . . . 7
⊢ (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔
∀𝑎 ∈ 𝑉 ∀𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒)) |
22 | 21 | ibi 266 |
. . . . . 6
⊢ (𝐺 ∈ ComplGraph →
∀𝑎 ∈ 𝑉 ∀𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒) |
23 | | rsp2 3136 |
. . . . . 6
⊢
(∀𝑎 ∈
𝑉 ∀𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒 → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒)) |
24 | 22, 23 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ ComplGraph →
((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒)) |
25 | 24 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝐺 ∈ ComplGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒)) |
26 | 1, 2, 18, 25 | vtocl2d 3486 |
. . 3
⊢ ((𝐺 ∈ ComplGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) |
27 | 1, 2, 26 | mp2and 695 |
. 2
⊢ ((𝐺 ∈ ComplGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) |
28 | 27 | 3expib 1120 |
1
⊢ (𝐺 ∈ ComplGraph →
((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) |