Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cplgredgex Structured version   Visualization version   GIF version

Theorem cplgredgex 35088
Description: Any two (distinct) vertices in a complete graph are connected to each other by at least one edge. (Contributed by BTernaryTau, 2-Oct-2023.)
Hypotheses
Ref Expression
cplgredgex.1 𝑉 = (Vtx‘𝐺)
cplgredgex.2 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cplgredgex (𝐺 ∈ ComplGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝑒,𝐸   𝑒,𝐺   𝑒,𝑉

Proof of Theorem cplgredgex
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . 3 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → 𝐴𝑉)
2 simp3 1138 . . 3 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → 𝐵 ∈ (𝑉 ∖ {𝐴}))
3 eleq1 2832 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝑉𝐴𝑉))
4 sneq 4658 . . . . . . . . 9 (𝑎 = 𝐴 → {𝑎} = {𝐴})
54difeq2d 4149 . . . . . . . 8 (𝑎 = 𝐴 → (𝑉 ∖ {𝑎}) = (𝑉 ∖ {𝐴}))
65eleq2d 2830 . . . . . . 7 (𝑎 = 𝐴 → (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ 𝑏 ∈ (𝑉 ∖ {𝐴})))
73, 6anbi12d 631 . . . . . 6 (𝑎 = 𝐴 → ((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) ↔ (𝐴𝑉𝑏 ∈ (𝑉 ∖ {𝐴}))))
8 preq1 4758 . . . . . . . 8 (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏})
98sseq1d 4040 . . . . . . 7 (𝑎 = 𝐴 → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝐴, 𝑏} ⊆ 𝑒))
109rexbidv 3185 . . . . . 6 (𝑎 = 𝐴 → (∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝐴, 𝑏} ⊆ 𝑒))
117, 10imbi12d 344 . . . . 5 (𝑎 = 𝐴 → (((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒) ↔ ((𝐴𝑉𝑏 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝑏} ⊆ 𝑒)))
12 eleq1 2832 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 ∈ (𝑉 ∖ {𝐴}) ↔ 𝐵 ∈ (𝑉 ∖ {𝐴})))
1312anbi2d 629 . . . . . 6 (𝑏 = 𝐵 → ((𝐴𝑉𝑏 ∈ (𝑉 ∖ {𝐴})) ↔ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))))
14 preq2 4759 . . . . . . . 8 (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵})
1514sseq1d 4040 . . . . . . 7 (𝑏 = 𝐵 → ({𝐴, 𝑏} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ 𝑒))
1615rexbidv 3185 . . . . . 6 (𝑏 = 𝐵 → (∃𝑒𝐸 {𝐴, 𝑏} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
1713, 16imbi12d 344 . . . . 5 (𝑏 = 𝐵 → (((𝐴𝑉𝑏 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝑏} ⊆ 𝑒) ↔ ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)))
1811, 17sylan9bb 509 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒) ↔ ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)))
19 cplgredgex.1 . . . . . . . 8 𝑉 = (Vtx‘𝐺)
20 cplgredgex.2 . . . . . . . 8 𝐸 = (Edg‘𝐺)
2119, 20iscplgredg 29452 . . . . . . 7 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
2221ibi 267 . . . . . 6 (𝐺 ∈ ComplGraph → ∀𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒)
23 rsp2 3283 . . . . . 6 (∀𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒 → ((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
2422, 23syl 17 . . . . 5 (𝐺 ∈ ComplGraph → ((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
25243ad2ant1 1133 . . . 4 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
261, 2, 18, 25vtocl2d 3574 . . 3 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
271, 2, 26mp2and 698 . 2 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)
28273expib 1122 1 (𝐺 ∈ ComplGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cdif 3973  wss 3976  {csn 4648  {cpr 4650  cfv 6573  Vtxcvtx 29031  Edgcedg 29082  ComplGraphccplgr 29444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-nbgr 29368  df-uvtx 29421  df-cplgr 29446
This theorem is referenced by:  cusgredgex  35089
  Copyright terms: Public domain W3C validator