Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cplgredgex Structured version   Visualization version   GIF version

Theorem cplgredgex 35163
Description: Any two (distinct) vertices in a complete graph are connected to each other by at least one edge. (Contributed by BTernaryTau, 2-Oct-2023.)
Hypotheses
Ref Expression
cplgredgex.1 𝑉 = (Vtx‘𝐺)
cplgredgex.2 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cplgredgex (𝐺 ∈ ComplGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝑒,𝐸   𝑒,𝐺   𝑒,𝑉

Proof of Theorem cplgredgex
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . 3 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → 𝐴𝑉)
2 simp3 1138 . . 3 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → 𝐵 ∈ (𝑉 ∖ {𝐴}))
3 eleq1 2819 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝑉𝐴𝑉))
4 sneq 4586 . . . . . . . . 9 (𝑎 = 𝐴 → {𝑎} = {𝐴})
54difeq2d 4076 . . . . . . . 8 (𝑎 = 𝐴 → (𝑉 ∖ {𝑎}) = (𝑉 ∖ {𝐴}))
65eleq2d 2817 . . . . . . 7 (𝑎 = 𝐴 → (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ 𝑏 ∈ (𝑉 ∖ {𝐴})))
73, 6anbi12d 632 . . . . . 6 (𝑎 = 𝐴 → ((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) ↔ (𝐴𝑉𝑏 ∈ (𝑉 ∖ {𝐴}))))
8 preq1 4686 . . . . . . . 8 (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏})
98sseq1d 3966 . . . . . . 7 (𝑎 = 𝐴 → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝐴, 𝑏} ⊆ 𝑒))
109rexbidv 3156 . . . . . 6 (𝑎 = 𝐴 → (∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝐴, 𝑏} ⊆ 𝑒))
117, 10imbi12d 344 . . . . 5 (𝑎 = 𝐴 → (((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒) ↔ ((𝐴𝑉𝑏 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝑏} ⊆ 𝑒)))
12 eleq1 2819 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 ∈ (𝑉 ∖ {𝐴}) ↔ 𝐵 ∈ (𝑉 ∖ {𝐴})))
1312anbi2d 630 . . . . . 6 (𝑏 = 𝐵 → ((𝐴𝑉𝑏 ∈ (𝑉 ∖ {𝐴})) ↔ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))))
14 preq2 4687 . . . . . . . 8 (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵})
1514sseq1d 3966 . . . . . . 7 (𝑏 = 𝐵 → ({𝐴, 𝑏} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ 𝑒))
1615rexbidv 3156 . . . . . 6 (𝑏 = 𝐵 → (∃𝑒𝐸 {𝐴, 𝑏} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
1713, 16imbi12d 344 . . . . 5 (𝑏 = 𝐵 → (((𝐴𝑉𝑏 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝑏} ⊆ 𝑒) ↔ ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)))
1811, 17sylan9bb 509 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒) ↔ ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)))
19 cplgredgex.1 . . . . . . . 8 𝑉 = (Vtx‘𝐺)
20 cplgredgex.2 . . . . . . . 8 𝐸 = (Edg‘𝐺)
2119, 20iscplgredg 29396 . . . . . . 7 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
2221ibi 267 . . . . . 6 (𝐺 ∈ ComplGraph → ∀𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒)
23 rsp2 3249 . . . . . 6 (∀𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒 → ((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
2422, 23syl 17 . . . . 5 (𝐺 ∈ ComplGraph → ((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
25243ad2ant1 1133 . . . 4 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ((𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
261, 2, 18, 25vtocl2d 3517 . . 3 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
271, 2, 26mp2and 699 . 2 ((𝐺 ∈ ComplGraph ∧ 𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)
28273expib 1122 1 (𝐺 ∈ ComplGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cdif 3899  wss 3902  {csn 4576  {cpr 4578  cfv 6481  Vtxcvtx 28975  Edgcedg 29026  ComplGraphccplgr 29388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-nbgr 29312  df-uvtx 29365  df-cplgr 29390
This theorem is referenced by:  cusgredgex  35164
  Copyright terms: Public domain W3C validator