Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acycgrcycl Structured version   Visualization version   GIF version

Theorem acycgrcycl 33009
Description: Any cycle in an acyclic graph is trivial (i.e. has one vertex and no edges). (Contributed by BTernaryTau, 12-Oct-2023.)
Assertion
Ref Expression
acycgrcycl ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅)

Proof of Theorem acycgrcycl
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycliswlk 28067 . . . . . . . 8 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
2 wlkv 27882 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
31, 2syl 17 . . . . . . 7 (𝐹(Cycles‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
43simp2d 1141 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃𝐹 ∈ V)
54adantl 481 . . . . 5 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 ∈ V)
63simp3d 1142 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃𝑃 ∈ V)
76adantl 481 . . . . 5 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝑃 ∈ V)
8 breq1 5073 . . . . . . 7 (𝑓 = 𝐹 → (𝑓(Cycles‘𝐺)𝑝𝐹(Cycles‘𝐺)𝑝))
9 eqeq1 2742 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 = ∅ ↔ 𝐹 = ∅))
108, 9imbi12d 344 . . . . . 6 (𝑓 = 𝐹 → ((𝑓(Cycles‘𝐺)𝑝𝑓 = ∅) ↔ (𝐹(Cycles‘𝐺)𝑝𝐹 = ∅)))
11 breq2 5074 . . . . . . 7 (𝑝 = 𝑃 → (𝐹(Cycles‘𝐺)𝑝𝐹(Cycles‘𝐺)𝑃))
1211imbi1d 341 . . . . . 6 (𝑝 = 𝑃 → ((𝐹(Cycles‘𝐺)𝑝𝐹 = ∅) ↔ (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅)))
1310, 12sylan9bb 509 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓(Cycles‘𝐺)𝑝𝑓 = ∅) ↔ (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅)))
14 isacycgr1 33008 . . . . . . . 8 (𝐺 ∈ AcyclicGraph → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
1514ibi 266 . . . . . . 7 (𝐺 ∈ AcyclicGraph → ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
161519.21bbi 2185 . . . . . 6 (𝐺 ∈ AcyclicGraph → (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
1716adantr 480 . . . . 5 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
185, 7, 13, 17vtocl2d 3486 . . . 4 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅))
1918ex 412 . . 3 (𝐺 ∈ AcyclicGraph → (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅)))
2019pm2.43d 53 . 2 (𝐺 ∈ AcyclicGraph → (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅))
2120imp 406 1 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wal 1537   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253   class class class wbr 5070  cfv 6418  Walkscwlks 27866  Cyclesccycls 28054  AcyclicGraphcacycgr 33004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-wlks 27869  df-trls 27962  df-pths 27985  df-cycls 28056  df-acycgr 33005
This theorem is referenced by:  pthacycspth  33019
  Copyright terms: Public domain W3C validator