Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgrcycl | Structured version Visualization version GIF version |
Description: Any cycle in an acyclic graph is trivial (i.e. has one vertex and no edges). (Contributed by BTernaryTau, 12-Oct-2023.) |
Ref | Expression |
---|---|
acycgrcycl | ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycliswlk 28067 | . . . . . . . 8 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
2 | wlkv 27882 | . . . . . . . 8 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
3 | 1, 2 | syl 17 | . . . . . . 7 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
4 | 3 | simp2d 1141 | . . . . . 6 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹 ∈ V) |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 ∈ V) |
6 | 3 | simp3d 1142 | . . . . . 6 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝑃 ∈ V) |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝑃 ∈ V) |
8 | breq1 5073 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓(Cycles‘𝐺)𝑝 ↔ 𝐹(Cycles‘𝐺)𝑝)) | |
9 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓 = ∅ ↔ 𝐹 = ∅)) | |
10 | 8, 9 | imbi12d 344 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅) ↔ (𝐹(Cycles‘𝐺)𝑝 → 𝐹 = ∅))) |
11 | breq2 5074 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (𝐹(Cycles‘𝐺)𝑝 ↔ 𝐹(Cycles‘𝐺)𝑃)) | |
12 | 11 | imbi1d 341 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((𝐹(Cycles‘𝐺)𝑝 → 𝐹 = ∅) ↔ (𝐹(Cycles‘𝐺)𝑃 → 𝐹 = ∅))) |
13 | 10, 12 | sylan9bb 509 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅) ↔ (𝐹(Cycles‘𝐺)𝑃 → 𝐹 = ∅))) |
14 | isacycgr1 33008 | . . . . . . . 8 ⊢ (𝐺 ∈ AcyclicGraph → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) | |
15 | 14 | ibi 266 | . . . . . . 7 ⊢ (𝐺 ∈ AcyclicGraph → ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅)) |
16 | 15 | 19.21bbi 2185 | . . . . . 6 ⊢ (𝐺 ∈ AcyclicGraph → (𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅)) |
17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅)) |
18 | 5, 7, 13, 17 | vtocl2d 3486 | . . . 4 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (𝐹(Cycles‘𝐺)𝑃 → 𝐹 = ∅)) |
19 | 18 | ex 412 | . . 3 ⊢ (𝐺 ∈ AcyclicGraph → (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Cycles‘𝐺)𝑃 → 𝐹 = ∅))) |
20 | 19 | pm2.43d 53 | . 2 ⊢ (𝐺 ∈ AcyclicGraph → (𝐹(Cycles‘𝐺)𝑃 → 𝐹 = ∅)) |
21 | 20 | imp 406 | 1 ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 Walkscwlks 27866 Cyclesccycls 28054 AcyclicGraphcacycgr 33004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-wlks 27869 df-trls 27962 df-pths 27985 df-cycls 28056 df-acycgr 33005 |
This theorem is referenced by: pthacycspth 33019 |
Copyright terms: Public domain | W3C validator |