Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acycgrcycl Structured version   Visualization version   GIF version

Theorem acycgrcycl 35120
Description: Any cycle in an acyclic graph is trivial (i.e. has one vertex and no edges). (Contributed by BTernaryTau, 12-Oct-2023.)
Assertion
Ref Expression
acycgrcycl ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅)

Proof of Theorem acycgrcycl
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycliswlk 29743 . . . . . . . 8 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
2 wlkv 29558 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
31, 2syl 17 . . . . . . 7 (𝐹(Cycles‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
43simp2d 1143 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃𝐹 ∈ V)
54adantl 481 . . . . 5 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 ∈ V)
63simp3d 1144 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃𝑃 ∈ V)
76adantl 481 . . . . 5 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝑃 ∈ V)
8 breq1 5095 . . . . . . 7 (𝑓 = 𝐹 → (𝑓(Cycles‘𝐺)𝑝𝐹(Cycles‘𝐺)𝑝))
9 eqeq1 2733 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 = ∅ ↔ 𝐹 = ∅))
108, 9imbi12d 344 . . . . . 6 (𝑓 = 𝐹 → ((𝑓(Cycles‘𝐺)𝑝𝑓 = ∅) ↔ (𝐹(Cycles‘𝐺)𝑝𝐹 = ∅)))
11 breq2 5096 . . . . . . 7 (𝑝 = 𝑃 → (𝐹(Cycles‘𝐺)𝑝𝐹(Cycles‘𝐺)𝑃))
1211imbi1d 341 . . . . . 6 (𝑝 = 𝑃 → ((𝐹(Cycles‘𝐺)𝑝𝐹 = ∅) ↔ (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅)))
1310, 12sylan9bb 509 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓(Cycles‘𝐺)𝑝𝑓 = ∅) ↔ (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅)))
14 isacycgr1 35119 . . . . . . . 8 (𝐺 ∈ AcyclicGraph → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
1514ibi 267 . . . . . . 7 (𝐺 ∈ AcyclicGraph → ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
161519.21bbi 2191 . . . . . 6 (𝐺 ∈ AcyclicGraph → (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
1716adantr 480 . . . . 5 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
185, 7, 13, 17vtocl2d 3517 . . . 4 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅))
1918ex 412 . . 3 (𝐺 ∈ AcyclicGraph → (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅)))
2019pm2.43d 53 . 2 (𝐺 ∈ AcyclicGraph → (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅))
2120imp 406 1 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  Vcvv 3436  c0 4284   class class class wbr 5092  cfv 6482  Walkscwlks 29542  Cyclesccycls 29730  AcyclicGraphcacycgr 35115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-wlks 29545  df-trls 29636  df-pths 29659  df-cycls 29732  df-acycgr 35116
This theorem is referenced by:  pthacycspth  35130
  Copyright terms: Public domain W3C validator