Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acycgrcycl Structured version   Visualization version   GIF version

Theorem acycgrcycl 35107
Description: Any cycle in an acyclic graph is trivial (i.e. has one vertex and no edges). (Contributed by BTernaryTau, 12-Oct-2023.)
Assertion
Ref Expression
acycgrcycl ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅)

Proof of Theorem acycgrcycl
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycliswlk 29701 . . . . . . . 8 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
2 wlkv 29516 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
31, 2syl 17 . . . . . . 7 (𝐹(Cycles‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
43simp2d 1143 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃𝐹 ∈ V)
54adantl 481 . . . . 5 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 ∈ V)
63simp3d 1144 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃𝑃 ∈ V)
76adantl 481 . . . . 5 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝑃 ∈ V)
8 breq1 5105 . . . . . . 7 (𝑓 = 𝐹 → (𝑓(Cycles‘𝐺)𝑝𝐹(Cycles‘𝐺)𝑝))
9 eqeq1 2733 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 = ∅ ↔ 𝐹 = ∅))
108, 9imbi12d 344 . . . . . 6 (𝑓 = 𝐹 → ((𝑓(Cycles‘𝐺)𝑝𝑓 = ∅) ↔ (𝐹(Cycles‘𝐺)𝑝𝐹 = ∅)))
11 breq2 5106 . . . . . . 7 (𝑝 = 𝑃 → (𝐹(Cycles‘𝐺)𝑝𝐹(Cycles‘𝐺)𝑃))
1211imbi1d 341 . . . . . 6 (𝑝 = 𝑃 → ((𝐹(Cycles‘𝐺)𝑝𝐹 = ∅) ↔ (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅)))
1310, 12sylan9bb 509 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓(Cycles‘𝐺)𝑝𝑓 = ∅) ↔ (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅)))
14 isacycgr1 35106 . . . . . . . 8 (𝐺 ∈ AcyclicGraph → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
1514ibi 267 . . . . . . 7 (𝐺 ∈ AcyclicGraph → ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
161519.21bbi 2191 . . . . . 6 (𝐺 ∈ AcyclicGraph → (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
1716adantr 480 . . . . 5 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
185, 7, 13, 17vtocl2d 3525 . . . 4 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅))
1918ex 412 . . 3 (𝐺 ∈ AcyclicGraph → (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅)))
2019pm2.43d 53 . 2 (𝐺 ∈ AcyclicGraph → (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅))
2120imp 406 1 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292   class class class wbr 5102  cfv 6499  Walkscwlks 29500  Cyclesccycls 29688  AcyclicGraphcacycgr 35102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-wlks 29503  df-trls 29594  df-pths 29617  df-cycls 29690  df-acycgr 35103
This theorem is referenced by:  pthacycspth  35117
  Copyright terms: Public domain W3C validator