![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgrcycl | Structured version Visualization version GIF version |
Description: Any cycle in an acyclic graph is trivial (i.e. has one vertex and no edges). (Contributed by BTernaryTau, 12-Oct-2023.) |
Ref | Expression |
---|---|
acycgrcycl | β’ ((πΊ β AcyclicGraph β§ πΉ(CyclesβπΊ)π) β πΉ = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycliswlk 29323 | . . . . . . . 8 β’ (πΉ(CyclesβπΊ)π β πΉ(WalksβπΊ)π) | |
2 | wlkv 29137 | . . . . . . . 8 β’ (πΉ(WalksβπΊ)π β (πΊ β V β§ πΉ β V β§ π β V)) | |
3 | 1, 2 | syl 17 | . . . . . . 7 β’ (πΉ(CyclesβπΊ)π β (πΊ β V β§ πΉ β V β§ π β V)) |
4 | 3 | simp2d 1142 | . . . . . 6 β’ (πΉ(CyclesβπΊ)π β πΉ β V) |
5 | 4 | adantl 481 | . . . . 5 β’ ((πΊ β AcyclicGraph β§ πΉ(CyclesβπΊ)π) β πΉ β V) |
6 | 3 | simp3d 1143 | . . . . . 6 β’ (πΉ(CyclesβπΊ)π β π β V) |
7 | 6 | adantl 481 | . . . . 5 β’ ((πΊ β AcyclicGraph β§ πΉ(CyclesβπΊ)π) β π β V) |
8 | breq1 5151 | . . . . . . 7 β’ (π = πΉ β (π(CyclesβπΊ)π β πΉ(CyclesβπΊ)π)) | |
9 | eqeq1 2735 | . . . . . . 7 β’ (π = πΉ β (π = β β πΉ = β )) | |
10 | 8, 9 | imbi12d 344 | . . . . . 6 β’ (π = πΉ β ((π(CyclesβπΊ)π β π = β ) β (πΉ(CyclesβπΊ)π β πΉ = β ))) |
11 | breq2 5152 | . . . . . . 7 β’ (π = π β (πΉ(CyclesβπΊ)π β πΉ(CyclesβπΊ)π)) | |
12 | 11 | imbi1d 341 | . . . . . 6 β’ (π = π β ((πΉ(CyclesβπΊ)π β πΉ = β ) β (πΉ(CyclesβπΊ)π β πΉ = β ))) |
13 | 10, 12 | sylan9bb 509 | . . . . 5 β’ ((π = πΉ β§ π = π) β ((π(CyclesβπΊ)π β π = β ) β (πΉ(CyclesβπΊ)π β πΉ = β ))) |
14 | isacycgr1 34436 | . . . . . . . 8 β’ (πΊ β AcyclicGraph β (πΊ β AcyclicGraph β βπβπ(π(CyclesβπΊ)π β π = β ))) | |
15 | 14 | ibi 267 | . . . . . . 7 β’ (πΊ β AcyclicGraph β βπβπ(π(CyclesβπΊ)π β π = β )) |
16 | 15 | 19.21bbi 2182 | . . . . . 6 β’ (πΊ β AcyclicGraph β (π(CyclesβπΊ)π β π = β )) |
17 | 16 | adantr 480 | . . . . 5 β’ ((πΊ β AcyclicGraph β§ πΉ(CyclesβπΊ)π) β (π(CyclesβπΊ)π β π = β )) |
18 | 5, 7, 13, 17 | vtocl2d 3549 | . . . 4 β’ ((πΊ β AcyclicGraph β§ πΉ(CyclesβπΊ)π) β (πΉ(CyclesβπΊ)π β πΉ = β )) |
19 | 18 | ex 412 | . . 3 β’ (πΊ β AcyclicGraph β (πΉ(CyclesβπΊ)π β (πΉ(CyclesβπΊ)π β πΉ = β ))) |
20 | 19 | pm2.43d 53 | . 2 β’ (πΊ β AcyclicGraph β (πΉ(CyclesβπΊ)π β πΉ = β )) |
21 | 20 | imp 406 | 1 β’ ((πΊ β AcyclicGraph β§ πΉ(CyclesβπΊ)π) β πΉ = β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 βwal 1538 = wceq 1540 β wcel 2105 Vcvv 3473 β c0 4322 class class class wbr 5148 βcfv 6543 Walkscwlks 29121 Cyclesccycls 29310 AcyclicGraphcacycgr 34432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-wlks 29124 df-trls 29217 df-pths 29241 df-cycls 29312 df-acycgr 34433 |
This theorem is referenced by: pthacycspth 34447 |
Copyright terms: Public domain | W3C validator |