| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑛 = 0 → (2 · 𝑛) = (2 ·
0)) |
| 2 | 1 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑛 = 0 → ((2 · 𝑛) = (♯‘𝑥) ↔ (2 · 0) =
(♯‘𝑥))) |
| 3 | 2 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑛 = 0 → (((2 · 𝑛) = (♯‘𝑥) → 𝜑) ↔ ((2 · 0) =
(♯‘𝑥) →
𝜑))) |
| 4 | 3 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑛 = 0 → (∀𝑥 ∈ Word 𝐵((2 · 𝑛) = (♯‘𝑥) → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((2 · 0) = (♯‘𝑥) → 𝜑))) |
| 5 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘)) |
| 6 | 5 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → ((2 · 𝑛) = (♯‘𝑥) ↔ (2 · 𝑘) = (♯‘𝑥))) |
| 7 | 6 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (((2 · 𝑛) = (♯‘𝑥) → 𝜑) ↔ ((2 · 𝑘) = (♯‘𝑥) → 𝜑))) |
| 8 | 7 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (∀𝑥 ∈ Word 𝐵((2 · 𝑛) = (♯‘𝑥) → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((2 · 𝑘) = (♯‘𝑥) → 𝜑))) |
| 9 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑘 + 1) → (2 · 𝑛) = (2 · (𝑘 + 1))) |
| 10 | 9 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑛 = (𝑘 + 1) → ((2 · 𝑛) = (♯‘𝑥) ↔ (2 · (𝑘 + 1)) = (♯‘𝑥))) |
| 11 | 10 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑛 = (𝑘 + 1) → (((2 · 𝑛) = (♯‘𝑥) → 𝜑) ↔ ((2 · (𝑘 + 1)) = (♯‘𝑥) → 𝜑))) |
| 12 | 11 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑛 = (𝑘 + 1) → (∀𝑥 ∈ Word 𝐵((2 · 𝑛) = (♯‘𝑥) → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((2 · (𝑘 + 1)) = (♯‘𝑥) → 𝜑))) |
| 13 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (2 · 𝑛) = (2 · 𝑚)) |
| 14 | 13 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → ((2 · 𝑛) = (♯‘𝑥) ↔ (2 · 𝑚) = (♯‘𝑥))) |
| 15 | 14 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (((2 · 𝑛) = (♯‘𝑥) → 𝜑) ↔ ((2 · 𝑚) = (♯‘𝑥) → 𝜑))) |
| 16 | 15 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (∀𝑥 ∈ Word 𝐵((2 · 𝑛) = (♯‘𝑥) → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((2 · 𝑚) = (♯‘𝑥) → 𝜑))) |
| 17 | | 2t0e0 12435 |
. . . . . . . . . . . 12
⊢ (2
· 0) = 0 |
| 18 | 17 | eqeq1i 2742 |
. . . . . . . . . . 11
⊢ ((2
· 0) = (♯‘𝑥) ↔ 0 = (♯‘𝑥)) |
| 19 | | eqcom 2744 |
. . . . . . . . . . 11
⊢ (0 =
(♯‘𝑥) ↔
(♯‘𝑥) =
0) |
| 20 | 18, 19 | bitri 275 |
. . . . . . . . . 10
⊢ ((2
· 0) = (♯‘𝑥) ↔ (♯‘𝑥) = 0) |
| 21 | | hasheq0 14402 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Word 𝐵 → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)) |
| 22 | 20, 21 | bitrid 283 |
. . . . . . . . 9
⊢ (𝑥 ∈ Word 𝐵 → ((2 · 0) =
(♯‘𝑥) ↔
𝑥 =
∅)) |
| 23 | | wrdt2ind.5 |
. . . . . . . . . 10
⊢ 𝜓 |
| 24 | | wrdt2ind.1 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| 25 | 23, 24 | mpbiri 258 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → 𝜑) |
| 26 | 22, 25 | biimtrdi 253 |
. . . . . . . 8
⊢ (𝑥 ∈ Word 𝐵 → ((2 · 0) =
(♯‘𝑥) →
𝜑)) |
| 27 | 26 | rgen 3063 |
. . . . . . 7
⊢
∀𝑥 ∈
Word 𝐵((2 · 0) =
(♯‘𝑥) →
𝜑) |
| 28 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦)) |
| 29 | 28 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((2 · 𝑘) = (♯‘𝑥) ↔ (2 · 𝑘) = (♯‘𝑦))) |
| 30 | | wrdt2ind.2 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| 31 | 29, 30 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((2 · 𝑘) = (♯‘𝑥) → 𝜑) ↔ ((2 · 𝑘) = (♯‘𝑦) → 𝜒))) |
| 32 | 31 | cbvralvw 3237 |
. . . . . . . 8
⊢
(∀𝑥 ∈
Word 𝐵((2 · 𝑘) = (♯‘𝑥) → 𝜑) ↔ ∀𝑦 ∈ Word 𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) |
| 33 | | simprl 771 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 𝑥 ∈ Word 𝐵) |
| 34 | | 0zd 12625 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 0 ∈
ℤ) |
| 35 | | lencl 14571 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ Word 𝐵 → (♯‘𝑥) ∈
ℕ0) |
| 36 | 33, 35 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (♯‘𝑥) ∈
ℕ0) |
| 37 | 36 | nn0zd 12639 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (♯‘𝑥) ∈
ℤ) |
| 38 | | 2z 12649 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℤ |
| 39 | 38 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 2 ∈
ℤ) |
| 40 | 37, 39 | zsubcld 12727 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − 2) ∈
ℤ) |
| 41 | | 2re 12340 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℝ |
| 42 | 41 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ0
→ 2 ∈ ℝ) |
| 43 | | nn0re 12535 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) |
| 44 | | 0le2 12368 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ≤
2 |
| 45 | 44 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ0
→ 0 ≤ 2) |
| 46 | | nn0ge0 12551 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ0
→ 0 ≤ 𝑘) |
| 47 | 42, 43, 45, 46 | mulge0d 11840 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ0
→ 0 ≤ (2 · 𝑘)) |
| 48 | 47 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 0 ≤ (2 ·
𝑘)) |
| 49 | | 2cnd 12344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 2 ∈
ℂ) |
| 50 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 𝑘 ∈ ℕ0) |
| 51 | 50 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 𝑘 ∈ ℂ) |
| 52 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 1 ∈
ℂ) |
| 53 | 49, 51, 52 | adddid 11285 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 ·
1))) |
| 54 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (2 · (𝑘 + 1)) = (♯‘𝑥)) |
| 55 | | 2t1e2 12429 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (2
· 1) = 2 |
| 56 | 55 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (2 · 1) =
2) |
| 57 | 56 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((2 · 𝑘) + (2 · 1)) = ((2
· 𝑘) +
2)) |
| 58 | 53, 54, 57 | 3eqtr3d 2785 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (♯‘𝑥) = ((2 · 𝑘) + 2)) |
| 59 | 58 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − 2) = (((2 ·
𝑘) + 2) −
2)) |
| 60 | 49, 51 | mulcld 11281 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (2 · 𝑘) ∈
ℂ) |
| 61 | 60, 49 | pncand 11621 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (((2 · 𝑘) + 2) − 2) = (2 ·
𝑘)) |
| 62 | 59, 61 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − 2) = (2 · 𝑘)) |
| 63 | 48, 62 | breqtrrd 5171 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 0 ≤
((♯‘𝑥) −
2)) |
| 64 | 40 | zred 12722 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − 2) ∈
ℝ) |
| 65 | 36 | nn0red 12588 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (♯‘𝑥) ∈
ℝ) |
| 66 | | 2pos 12369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 <
2 |
| 67 | 41 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 2 ∈
ℝ) |
| 68 | 67, 65 | ltsubposd 11849 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (0 < 2 ↔
((♯‘𝑥) −
2) < (♯‘𝑥))) |
| 69 | 66, 68 | mpbii 233 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − 2) <
(♯‘𝑥)) |
| 70 | 64, 65, 69 | ltled 11409 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − 2) ≤
(♯‘𝑥)) |
| 71 | 34, 37, 40, 63, 70 | elfzd 13555 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − 2) ∈
(0...(♯‘𝑥))) |
| 72 | | pfxlen 14721 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ Word 𝐵 ∧ ((♯‘𝑥) − 2) ∈ (0...(♯‘𝑥))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 2))) =
((♯‘𝑥) −
2)) |
| 73 | 33, 71, 72 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 2))) =
((♯‘𝑥) −
2)) |
| 74 | 73, 62 | eqtr2d 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (2 · 𝑘) = (♯‘(𝑥 prefix ((♯‘𝑥) − 2)))) |
| 75 | 74 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (2 · 𝑘) = (♯‘(𝑥 prefix ((♯‘𝑥) − 2)))) |
| 76 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 2)) → (♯‘𝑦) = (♯‘(𝑥 prefix ((♯‘𝑥) − 2)))) |
| 77 | 76 | eqeq2d 2748 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 2)) → ((2 · 𝑘) = (♯‘𝑦) ↔ (2 · 𝑘) = (♯‘(𝑥 prefix ((♯‘𝑥) −
2))))) |
| 78 | | vex 3484 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V |
| 79 | 78, 30 | sbcie 3830 |
. . . . . . . . . . . . . . . . 17
⊢
([𝑦 / 𝑥]𝜑 ↔ 𝜒) |
| 80 | | dfsbcq 3790 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 2)) → ([𝑦 / 𝑥]𝜑 ↔ [(𝑥 prefix ((♯‘𝑥) − 2)) / 𝑥]𝜑)) |
| 81 | 79, 80 | bitr3id 285 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 2)) → (𝜒 ↔ [(𝑥 prefix ((♯‘𝑥) − 2)) / 𝑥]𝜑)) |
| 82 | 77, 81 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 2)) → (((2 · 𝑘) = (♯‘𝑦) → 𝜒) ↔ ((2 · 𝑘) = (♯‘(𝑥 prefix ((♯‘𝑥) − 2))) → [(𝑥 prefix ((♯‘𝑥) − 2)) / 𝑥]𝜑))) |
| 83 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ∀𝑦 ∈ Word 𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) |
| 84 | | pfxcl 14715 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Word 𝐵 → (𝑥 prefix ((♯‘𝑥) − 2)) ∈ Word 𝐵) |
| 85 | 84 | ad2antrl 728 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (𝑥 prefix ((♯‘𝑥) − 2)) ∈ Word 𝐵) |
| 86 | 82, 83, 85 | rspcdva 3623 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((2 · 𝑘) = (♯‘(𝑥 prefix ((♯‘𝑥) − 2))) → [(𝑥 prefix ((♯‘𝑥) − 2)) / 𝑥]𝜑)) |
| 87 | 75, 86 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → [(𝑥 prefix ((♯‘𝑥) − 2)) / 𝑥]𝜑) |
| 88 | | 2nn0 12543 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℕ0 |
| 89 | 88 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 2 ∈
ℕ0) |
| 90 | 49 | addlidd 11462 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (0 + 2) =
2) |
| 91 | | 0red 11264 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 0 ∈
ℝ) |
| 92 | 62, 64 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (2 · 𝑘) ∈
ℝ) |
| 93 | 91, 92, 67, 48 | leadd1dd 11877 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (0 + 2) ≤ ((2
· 𝑘) +
2)) |
| 94 | 90, 93 | eqbrtrrd 5167 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 2 ≤ ((2 ·
𝑘) + 2)) |
| 95 | 94, 58 | breqtrrd 5171 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 2 ≤
(♯‘𝑥)) |
| 96 | | nn0sub 12576 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2
∈ ℕ0 ∧ (♯‘𝑥) ∈ ℕ0) → (2 ≤
(♯‘𝑥) ↔
((♯‘𝑥) −
2) ∈ ℕ0)) |
| 97 | 96 | biimpa 476 |
. . . . . . . . . . . . . . . . . 18
⊢ (((2
∈ ℕ0 ∧ (♯‘𝑥) ∈ ℕ0) ∧ 2 ≤
(♯‘𝑥)) →
((♯‘𝑥) −
2) ∈ ℕ0) |
| 98 | 89, 36, 95, 97 | syl21anc 838 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − 2) ∈
ℕ0) |
| 99 | 65 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (♯‘𝑥) ∈
ℂ) |
| 100 | 99, 49, 52 | subsubd 11648 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − (2 − 1)) =
(((♯‘𝑥) −
2) + 1)) |
| 101 | | 2m1e1 12392 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (2
− 1) = 1 |
| 102 | 101 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (2 − 1) =
1) |
| 103 | 102 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − (2 − 1)) =
((♯‘𝑥) −
1)) |
| 104 | 100, 103 | eqtr3d 2779 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) →
(((♯‘𝑥) −
2) + 1) = ((♯‘𝑥) − 1)) |
| 105 | 65 | lem1d 12201 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − 1) ≤
(♯‘𝑥)) |
| 106 | 104, 105 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) →
(((♯‘𝑥) −
2) + 1) ≤ (♯‘𝑥)) |
| 107 | | nn0p1elfzo 13742 |
. . . . . . . . . . . . . . . . 17
⊢
((((♯‘𝑥)
− 2) ∈ ℕ0 ∧ (♯‘𝑥) ∈ ℕ0 ∧
(((♯‘𝑥) −
2) + 1) ≤ (♯‘𝑥)) → ((♯‘𝑥) − 2) ∈ (0..^(♯‘𝑥))) |
| 108 | 98, 36, 106, 107 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − 2) ∈
(0..^(♯‘𝑥))) |
| 109 | | wrdsymbcl 14565 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ Word 𝐵 ∧ ((♯‘𝑥) − 2) ∈ (0..^(♯‘𝑥))) → (𝑥‘((♯‘𝑥) − 2)) ∈ 𝐵) |
| 110 | 33, 108, 109 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (𝑥‘((♯‘𝑥) − 2)) ∈ 𝐵) |
| 111 | 110 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (𝑥‘((♯‘𝑥) − 2)) ∈ 𝐵) |
| 112 | | nn0ge2m1nn0 12597 |
. . . . . . . . . . . . . . . . . 18
⊢
(((♯‘𝑥)
∈ ℕ0 ∧ 2 ≤ (♯‘𝑥)) → ((♯‘𝑥) − 1) ∈
ℕ0) |
| 113 | 36, 95, 112 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − 1) ∈
ℕ0) |
| 114 | 99, 52 | npcand 11624 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) →
(((♯‘𝑥) −
1) + 1) = (♯‘𝑥)) |
| 115 | 65 | leidd 11829 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (♯‘𝑥) ≤ (♯‘𝑥)) |
| 116 | 114, 115 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) →
(((♯‘𝑥) −
1) + 1) ≤ (♯‘𝑥)) |
| 117 | | nn0p1elfzo 13742 |
. . . . . . . . . . . . . . . . 17
⊢
((((♯‘𝑥)
− 1) ∈ ℕ0 ∧ (♯‘𝑥) ∈ ℕ0 ∧
(((♯‘𝑥) −
1) + 1) ≤ (♯‘𝑥)) → ((♯‘𝑥) − 1) ∈ (0..^(♯‘𝑥))) |
| 118 | 113, 36, 116, 117 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ((♯‘𝑥) − 1) ∈
(0..^(♯‘𝑥))) |
| 119 | | wrdsymbcl 14565 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ Word 𝐵 ∧ ((♯‘𝑥) − 1) ∈ (0..^(♯‘𝑥))) → (𝑥‘((♯‘𝑥) − 1)) ∈ 𝐵) |
| 120 | 33, 118, 119 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (𝑥‘((♯‘𝑥) − 1)) ∈ 𝐵) |
| 121 | 120 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (𝑥‘((♯‘𝑥) − 1)) ∈ 𝐵) |
| 122 | | oveq1 7438 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 2)) → (𝑦 ++ 〈“𝑖𝑗”〉) = ((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“𝑖𝑗”〉)) |
| 123 | 122 | sbceq1d 3793 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 2)) → ([(𝑦 ++ 〈“𝑖𝑗”〉) / 𝑥]𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“𝑖𝑗”〉) / 𝑥]𝜑)) |
| 124 | 80, 123 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 2)) → (([𝑦 / 𝑥]𝜑 → [(𝑦 ++ 〈“𝑖𝑗”〉) / 𝑥]𝜑) ↔ ([(𝑥 prefix ((♯‘𝑥) − 2)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“𝑖𝑗”〉) / 𝑥]𝜑))) |
| 125 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = (𝑥‘((♯‘𝑥) − 2)) → 𝑖 = (𝑥‘((♯‘𝑥) − 2))) |
| 126 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = (𝑥‘((♯‘𝑥) − 2)) → 𝑗 = 𝑗) |
| 127 | 125, 126 | s2eqd 14902 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = (𝑥‘((♯‘𝑥) − 2)) → 〈“𝑖𝑗”〉 = 〈“(𝑥‘((♯‘𝑥) − 2))𝑗”〉) |
| 128 | 127 | oveq2d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑥‘((♯‘𝑥) − 2)) → ((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“𝑖𝑗”〉) = ((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))𝑗”〉)) |
| 129 | 128 | sbceq1d 3793 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑥‘((♯‘𝑥) − 2)) → ([((𝑥 prefix ((♯‘𝑥) − 2)) ++
〈“𝑖𝑗”〉) / 𝑥]𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))𝑗”〉) / 𝑥]𝜑)) |
| 130 | 129 | imbi2d 340 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑥‘((♯‘𝑥) − 2)) → (([(𝑥 prefix ((♯‘𝑥) − 2)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“𝑖𝑗”〉) / 𝑥]𝜑) ↔ ([(𝑥 prefix ((♯‘𝑥) − 2)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))𝑗”〉) / 𝑥]𝜑))) |
| 131 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑥‘((♯‘𝑥) − 1)) → (𝑥‘((♯‘𝑥) − 2)) = (𝑥‘((♯‘𝑥) − 2))) |
| 132 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑥‘((♯‘𝑥) − 1)) → 𝑗 = (𝑥‘((♯‘𝑥) − 1))) |
| 133 | 131, 132 | s2eqd 14902 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑥‘((♯‘𝑥) − 1)) → 〈“(𝑥‘((♯‘𝑥) − 2))𝑗”〉 = 〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉) |
| 134 | 133 | oveq2d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑥‘((♯‘𝑥) − 1)) → ((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))𝑗”〉) = ((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉)) |
| 135 | 134 | sbceq1d 3793 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑥‘((♯‘𝑥) − 1)) → ([((𝑥 prefix ((♯‘𝑥) − 2)) ++
〈“(𝑥‘((♯‘𝑥) − 2))𝑗”〉) / 𝑥]𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉) / 𝑥]𝜑)) |
| 136 | 135 | imbi2d 340 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑥‘((♯‘𝑥) − 1)) → (([(𝑥 prefix ((♯‘𝑥) − 2)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))𝑗”〉) / 𝑥]𝜑) ↔ ([(𝑥 prefix ((♯‘𝑥) − 2)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉) / 𝑥]𝜑))) |
| 137 | | wrdt2ind.6 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵) → (𝜒 → 𝜃)) |
| 138 | | ovex 7464 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ++ 〈“𝑖𝑗”〉) ∈ V |
| 139 | | wrdt2ind.3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑦 ++ 〈“𝑖𝑗”〉) → (𝜑 ↔ 𝜃)) |
| 140 | 138, 139 | sbcie 3830 |
. . . . . . . . . . . . . . . 16
⊢
([(𝑦 ++
〈“𝑖𝑗”〉) / 𝑥]𝜑 ↔ 𝜃) |
| 141 | 137, 79, 140 | 3imtr4g 296 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵) → ([𝑦 / 𝑥]𝜑 → [(𝑦 ++ 〈“𝑖𝑗”〉) / 𝑥]𝜑)) |
| 142 | 124, 130,
136, 141 | vtocl3ga 3583 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 prefix ((♯‘𝑥) − 2)) ∈ Word 𝐵 ∧ (𝑥‘((♯‘𝑥) − 2)) ∈ 𝐵 ∧ (𝑥‘((♯‘𝑥) − 1)) ∈ 𝐵) → ([(𝑥 prefix ((♯‘𝑥) − 2)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉) / 𝑥]𝜑)) |
| 143 | 85, 111, 121, 142 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → ([(𝑥 prefix ((♯‘𝑥) − 2)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉) / 𝑥]𝜑)) |
| 144 | 87, 143 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → [((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉) / 𝑥]𝜑) |
| 145 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 𝑥 ∈ Word 𝐵) |
| 146 | | 1red 11262 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 1 ∈ ℝ) |
| 147 | | simpll 767 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 𝑘 ∈ ℕ0) |
| 148 | 147 | nn0red 12588 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 𝑘 ∈ ℝ) |
| 149 | 148, 146 | readdcld 11290 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (𝑘 + 1) ∈ ℝ) |
| 150 | 41 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 2 ∈ ℝ) |
| 151 | 44 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 0 ≤ 2) |
| 152 | | 0p1e1 12388 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 + 1) =
1 |
| 153 | | 0red 11264 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 0 ∈ ℝ) |
| 154 | 147 | nn0ge0d 12590 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 0 ≤ 𝑘) |
| 155 | 146 | leidd 11829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 1 ≤ 1) |
| 156 | 153, 146,
148, 146, 154, 155 | le2addd 11882 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (0 + 1) ≤ (𝑘 + 1)) |
| 157 | 152, 156 | eqbrtrrid 5179 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 1 ≤ (𝑘 + 1)) |
| 158 | 146, 149,
150, 151, 157 | lemul2ad 12208 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (2 · 1) ≤ (2 ·
(𝑘 + 1))) |
| 159 | 55, 158 | eqbrtrrid 5179 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 2 ≤ (2 · (𝑘 + 1))) |
| 160 | | simprr 773 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (2 · (𝑘 + 1)) = (♯‘𝑥)) |
| 161 | 159, 160 | breqtrd 5169 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 2 ≤ (♯‘𝑥)) |
| 162 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(♯‘𝑥) =
(♯‘𝑥) |
| 163 | 162 | pfxlsw2ccat 32935 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ Word 𝐵 ∧ 2 ≤ (♯‘𝑥)) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉)) |
| 164 | 163 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ Word 𝐵 ∧ 2 ≤ (♯‘𝑥)) → ((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉) = 𝑥) |
| 165 | 164 | eqcomd 2743 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ Word 𝐵 ∧ 2 ≤ (♯‘𝑥)) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉)) |
| 166 | 145, 161,
165 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉)) |
| 167 | | sbceq1a 3799 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉) → (𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 2)) ++
〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉) / 𝑥]𝜑)) |
| 168 | 166, 167 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → (𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 2)) ++ 〈“(𝑥‘((♯‘𝑥) − 2))(𝑥‘((♯‘𝑥) − 1))”〉) / 𝑥]𝜑)) |
| 169 | 144, 168 | mpbird 257 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (2 · (𝑘 + 1)) = (♯‘𝑥))) → 𝜑) |
| 170 | 169 | expr 456 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) ∧ 𝑥 ∈ Word 𝐵) → ((2 · (𝑘 + 1)) = (♯‘𝑥) → 𝜑)) |
| 171 | 170 | ralrimiva 3146 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒)) → ∀𝑥 ∈ Word 𝐵((2 · (𝑘 + 1)) = (♯‘𝑥) → 𝜑)) |
| 172 | 171 | ex 412 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (∀𝑦 ∈
Word 𝐵((2 · 𝑘) = (♯‘𝑦) → 𝜒) → ∀𝑥 ∈ Word 𝐵((2 · (𝑘 + 1)) = (♯‘𝑥) → 𝜑))) |
| 173 | 32, 172 | biimtrid 242 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (∀𝑥 ∈
Word 𝐵((2 · 𝑘) = (♯‘𝑥) → 𝜑) → ∀𝑥 ∈ Word 𝐵((2 · (𝑘 + 1)) = (♯‘𝑥) → 𝜑))) |
| 174 | 4, 8, 12, 16, 27, 173 | nn0ind 12713 |
. . . . . 6
⊢ (𝑚 ∈ ℕ0
→ ∀𝑥 ∈
Word 𝐵((2 · 𝑚) = (♯‘𝑥) → 𝜑)) |
| 175 | 174 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ Word 𝐵 ∧ 𝑚 ∈ ℕ0) →
∀𝑥 ∈ Word 𝐵((2 · 𝑚) = (♯‘𝑥) → 𝜑)) |
| 176 | | simpl 482 |
. . . . . 6
⊢ ((𝐴 ∈ Word 𝐵 ∧ 𝑚 ∈ ℕ0) → 𝐴 ∈ Word 𝐵) |
| 177 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴)) |
| 178 | 177 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ((2 · 𝑚) = (♯‘𝑥) ↔ (2 · 𝑚) = (♯‘𝐴))) |
| 179 | | wrdt2ind.4 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| 180 | 178, 179 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (((2 · 𝑚) = (♯‘𝑥) → 𝜑) ↔ ((2 · 𝑚) = (♯‘𝐴) → 𝜏))) |
| 181 | 180 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝐵 ∧ 𝑚 ∈ ℕ0) ∧ 𝑥 = 𝐴) → (((2 · 𝑚) = (♯‘𝑥) → 𝜑) ↔ ((2 · 𝑚) = (♯‘𝐴) → 𝜏))) |
| 182 | 176, 181 | rspcdv 3614 |
. . . . 5
⊢ ((𝐴 ∈ Word 𝐵 ∧ 𝑚 ∈ ℕ0) →
(∀𝑥 ∈ Word
𝐵((2 · 𝑚) = (♯‘𝑥) → 𝜑) → ((2 · 𝑚) = (♯‘𝐴) → 𝜏))) |
| 183 | 175, 182 | mpd 15 |
. . . 4
⊢ ((𝐴 ∈ Word 𝐵 ∧ 𝑚 ∈ ℕ0) → ((2
· 𝑚) =
(♯‘𝐴) →
𝜏)) |
| 184 | 183 | imp 406 |
. . 3
⊢ (((𝐴 ∈ Word 𝐵 ∧ 𝑚 ∈ ℕ0) ∧ (2
· 𝑚) =
(♯‘𝐴)) →
𝜏) |
| 185 | 184 | adantllr 719 |
. 2
⊢ ((((𝐴 ∈ Word 𝐵 ∧ 2 ∥ (♯‘𝐴)) ∧ 𝑚 ∈ ℕ0) ∧ (2
· 𝑚) =
(♯‘𝐴)) →
𝜏) |
| 186 | | lencl 14571 |
. . 3
⊢ (𝐴 ∈ Word 𝐵 → (♯‘𝐴) ∈
ℕ0) |
| 187 | | evennn02n 16387 |
. . . 4
⊢
((♯‘𝐴)
∈ ℕ0 → (2 ∥ (♯‘𝐴) ↔ ∃𝑚 ∈ ℕ0 (2 · 𝑚) = (♯‘𝐴))) |
| 188 | 187 | biimpa 476 |
. . 3
⊢
(((♯‘𝐴)
∈ ℕ0 ∧ 2 ∥ (♯‘𝐴)) → ∃𝑚 ∈ ℕ0 (2 · 𝑚) = (♯‘𝐴)) |
| 189 | 186, 188 | sylan 580 |
. 2
⊢ ((𝐴 ∈ Word 𝐵 ∧ 2 ∥ (♯‘𝐴)) → ∃𝑚 ∈ ℕ0 (2
· 𝑚) =
(♯‘𝐴)) |
| 190 | 185, 189 | r19.29a 3162 |
1
⊢ ((𝐴 ∈ Word 𝐵 ∧ 2 ∥ (♯‘𝐴)) → 𝜏) |