MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poclOLD Structured version   Visualization version   GIF version

Theorem poclOLD 5616
Description: Obsolete version of pocl 5615 as of 3-Oct-2024. (Contributed by NM, 27-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
poclOLD (𝑅 Po 𝐴 → ((𝐵𝐴𝐶𝐴𝐷𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))))

Proof of Theorem poclOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . 7 (𝑥 = 𝐵𝑥 = 𝐵)
21, 1breq12d 5179 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝑅𝑥𝐵𝑅𝐵))
32notbid 318 . . . . 5 (𝑥 = 𝐵 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝐵𝑅𝐵))
4 breq1 5169 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝑅𝑦𝐵𝑅𝑦))
54anbi1d 630 . . . . . 6 (𝑥 = 𝐵 → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝐵𝑅𝑦𝑦𝑅𝑧)))
6 breq1 5169 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝑅𝑧𝐵𝑅𝑧))
75, 6imbi12d 344 . . . . 5 (𝑥 = 𝐵 → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝐵𝑅𝑦𝑦𝑅𝑧) → 𝐵𝑅𝑧)))
83, 7anbi12d 631 . . . 4 (𝑥 = 𝐵 → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦𝑦𝑅𝑧) → 𝐵𝑅𝑧))))
98imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝑅 Po 𝐴 → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))) ↔ (𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦𝑦𝑅𝑧) → 𝐵𝑅𝑧)))))
10 breq2 5170 . . . . . . 7 (𝑦 = 𝐶 → (𝐵𝑅𝑦𝐵𝑅𝐶))
11 breq1 5169 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑅𝑧𝐶𝑅𝑧))
1210, 11anbi12d 631 . . . . . 6 (𝑦 = 𝐶 → ((𝐵𝑅𝑦𝑦𝑅𝑧) ↔ (𝐵𝑅𝐶𝐶𝑅𝑧)))
1312imbi1d 341 . . . . 5 (𝑦 = 𝐶 → (((𝐵𝑅𝑦𝑦𝑅𝑧) → 𝐵𝑅𝑧) ↔ ((𝐵𝑅𝐶𝐶𝑅𝑧) → 𝐵𝑅𝑧)))
1413anbi2d 629 . . . 4 (𝑦 = 𝐶 → ((¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦𝑦𝑅𝑧) → 𝐵𝑅𝑧)) ↔ (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝑧) → 𝐵𝑅𝑧))))
1514imbi2d 340 . . 3 (𝑦 = 𝐶 → ((𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦𝑦𝑅𝑧) → 𝐵𝑅𝑧))) ↔ (𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝑧) → 𝐵𝑅𝑧)))))
16 breq2 5170 . . . . . . 7 (𝑧 = 𝐷 → (𝐶𝑅𝑧𝐶𝑅𝐷))
1716anbi2d 629 . . . . . 6 (𝑧 = 𝐷 → ((𝐵𝑅𝐶𝐶𝑅𝑧) ↔ (𝐵𝑅𝐶𝐶𝑅𝐷)))
18 breq2 5170 . . . . . 6 (𝑧 = 𝐷 → (𝐵𝑅𝑧𝐵𝑅𝐷))
1917, 18imbi12d 344 . . . . 5 (𝑧 = 𝐷 → (((𝐵𝑅𝐶𝐶𝑅𝑧) → 𝐵𝑅𝑧) ↔ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷)))
2019anbi2d 629 . . . 4 (𝑧 = 𝐷 → ((¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝑧) → 𝐵𝑅𝑧)) ↔ (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))))
2120imbi2d 340 . . 3 (𝑧 = 𝐷 → ((𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝑧) → 𝐵𝑅𝑧))) ↔ (𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷)))))
22 df-po 5607 . . . . . . 7 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
23 r3al 3203 . . . . . . 7 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
2422, 23sylbb 219 . . . . . 6 (𝑅 Po 𝐴 → ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
252419.21bbi 2191 . . . . 5 (𝑅 Po 𝐴 → ∀𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
262519.21bi 2190 . . . 4 (𝑅 Po 𝐴 → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
2726com12 32 . . 3 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑅 Po 𝐴 → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
289, 15, 21, 27vtocl3ga 3595 . 2 ((𝐵𝐴𝐶𝐴𝐷𝐴) → (𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))))
2928com12 32 1 (𝑅 Po 𝐴 → ((𝐵𝐴𝐶𝐴𝐷𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166   Po wpo 5605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-po 5607
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator