MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jensenlem2 Structured version   Visualization version   GIF version

Theorem jensenlem2 25170
Description: Lemma for jensen 25171. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
jensen.1 (𝜑𝐷 ⊆ ℝ)
jensen.2 (𝜑𝐹:𝐷⟶ℝ)
jensen.3 ((𝜑 ∧ (𝑎𝐷𝑏𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷)
jensen.4 (𝜑𝐴 ∈ Fin)
jensen.5 (𝜑𝑇:𝐴⟶(0[,)+∞))
jensen.6 (𝜑𝑋:𝐴𝐷)
jensen.7 (𝜑 → 0 < (ℂfld Σg 𝑇))
jensen.8 ((𝜑 ∧ (𝑥𝐷𝑦𝐷𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))
jensenlem.1 (𝜑 → ¬ 𝑧𝐵)
jensenlem.2 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
jensenlem.s 𝑆 = (ℂfld Σg (𝑇𝐵))
jensenlem.l 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
jensenlem.3 (𝜑𝑆 ∈ ℝ+)
jensenlem.4 (𝜑 → ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷)
jensenlem.5 (𝜑 → (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) ≤ ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆))
Assertion
Ref Expression
jensenlem2 (𝜑 → (((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) ∈ 𝐷 ∧ (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)) ≤ ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)))
Distinct variable groups:   𝑎,𝑏,𝑡,𝑥,𝑦,𝐴   𝐷,𝑎,𝑏,𝑡,𝑥,𝑦   𝜑,𝑎,𝑏,𝑡,𝑥,𝑦   𝐹,𝑎,𝑏,𝑡,𝑥,𝑦   𝑇,𝑎,𝑏,𝑡,𝑥,𝑦   𝑋,𝑎,𝑏,𝑡,𝑥,𝑦   𝑧,𝑎,𝐵,𝑏,𝑡,𝑥,𝑦   𝑡,𝐿,𝑥,𝑦   𝑆,𝑎,𝑏,𝑡,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝐷(𝑧)   𝑆(𝑧)   𝑇(𝑧)   𝐹(𝑧)   𝐿(𝑧,𝑎,𝑏)   𝑋(𝑧)

Proof of Theorem jensenlem2
StepHypRef Expression
1 cnfld0 20170 . . . . . . 7 0 = (0g‘ℂfld)
2 cnring 20168 . . . . . . . 8 fld ∈ Ring
3 ringabl 18971 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ Abel)
42, 3mp1i 13 . . . . . . 7 (𝜑 → ℂfld ∈ Abel)
5 jensen.4 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
6 jensenlem.2 . . . . . . . . 9 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
76unssad 4013 . . . . . . . 8 (𝜑𝐵𝐴)
8 ssfi 8470 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
95, 7, 8syl2anc 579 . . . . . . 7 (𝜑𝐵 ∈ Fin)
10 resubdrg 20355 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
1110simpli 478 . . . . . . . 8 ℝ ∈ (SubRing‘ℂfld)
12 subrgsubg 19182 . . . . . . . 8 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
1311, 12mp1i 13 . . . . . . 7 (𝜑 → ℝ ∈ (SubGrp‘ℂfld))
14 remulcl 10359 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1514adantl 475 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
16 jensen.5 . . . . . . . . . 10 (𝜑𝑇:𝐴⟶(0[,)+∞))
17 rge0ssre 12598 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
18 fss 6306 . . . . . . . . . 10 ((𝑇:𝐴⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝑇:𝐴⟶ℝ)
1916, 17, 18sylancl 580 . . . . . . . . 9 (𝜑𝑇:𝐴⟶ℝ)
20 jensen.6 . . . . . . . . . 10 (𝜑𝑋:𝐴𝐷)
21 jensen.1 . . . . . . . . . 10 (𝜑𝐷 ⊆ ℝ)
2220, 21fssd 6307 . . . . . . . . 9 (𝜑𝑋:𝐴⟶ℝ)
23 inidm 4043 . . . . . . . . 9 (𝐴𝐴) = 𝐴
2415, 19, 22, 5, 5, 23off 7191 . . . . . . . 8 (𝜑 → (𝑇𝑓 · 𝑋):𝐴⟶ℝ)
2524, 7fssresd 6323 . . . . . . 7 (𝜑 → ((𝑇𝑓 · 𝑋) ↾ 𝐵):𝐵⟶ℝ)
26 c0ex 10372 . . . . . . . . 9 0 ∈ V
2726a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ V)
2825, 9, 27fdmfifsupp 8575 . . . . . . 7 (𝜑 → ((𝑇𝑓 · 𝑋) ↾ 𝐵) finSupp 0)
291, 4, 9, 13, 25, 28gsumsubgcl 18710 . . . . . 6 (𝜑 → (ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) ∈ ℝ)
3029recnd 10407 . . . . 5 (𝜑 → (ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) ∈ ℂ)
31 ax-resscn 10331 . . . . . . . 8 ℝ ⊆ ℂ
3217, 31sstri 3830 . . . . . . 7 (0[,)+∞) ⊆ ℂ
336unssbd 4014 . . . . . . . . 9 (𝜑 → {𝑧} ⊆ 𝐴)
34 vex 3401 . . . . . . . . . 10 𝑧 ∈ V
3534snss 4549 . . . . . . . . 9 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
3633, 35sylibr 226 . . . . . . . 8 (𝜑𝑧𝐴)
3716, 36ffvelrnd 6626 . . . . . . 7 (𝜑 → (𝑇𝑧) ∈ (0[,)+∞))
3832, 37sseldi 3819 . . . . . 6 (𝜑 → (𝑇𝑧) ∈ ℂ)
3920, 36ffvelrnd 6626 . . . . . . . 8 (𝜑 → (𝑋𝑧) ∈ 𝐷)
4021, 39sseldd 3822 . . . . . . 7 (𝜑 → (𝑋𝑧) ∈ ℝ)
4140recnd 10407 . . . . . 6 (𝜑 → (𝑋𝑧) ∈ ℂ)
4238, 41mulcld 10399 . . . . 5 (𝜑 → ((𝑇𝑧) · (𝑋𝑧)) ∈ ℂ)
43 jensen.2 . . . . . . . 8 (𝜑𝐹:𝐷⟶ℝ)
44 jensen.3 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐷𝑏𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷)
45 jensen.7 . . . . . . . 8 (𝜑 → 0 < (ℂfld Σg 𝑇))
46 jensen.8 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐷𝑦𝐷𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))
47 jensenlem.1 . . . . . . . 8 (𝜑 → ¬ 𝑧𝐵)
48 jensenlem.s . . . . . . . 8 𝑆 = (ℂfld Σg (𝑇𝐵))
49 jensenlem.l . . . . . . . 8 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
5021, 43, 44, 5, 16, 20, 45, 46, 47, 6, 48, 49jensenlem1 25169 . . . . . . 7 (𝜑𝐿 = (𝑆 + (𝑇𝑧)))
51 jensenlem.3 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ+)
5251rpred 12185 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
53 elrege0 12596 . . . . . . . . . 10 ((𝑇𝑧) ∈ (0[,)+∞) ↔ ((𝑇𝑧) ∈ ℝ ∧ 0 ≤ (𝑇𝑧)))
5453simplbi 493 . . . . . . . . 9 ((𝑇𝑧) ∈ (0[,)+∞) → (𝑇𝑧) ∈ ℝ)
5537, 54syl 17 . . . . . . . 8 (𝜑 → (𝑇𝑧) ∈ ℝ)
5652, 55readdcld 10408 . . . . . . 7 (𝜑 → (𝑆 + (𝑇𝑧)) ∈ ℝ)
5750, 56eqeltrd 2859 . . . . . 6 (𝜑𝐿 ∈ ℝ)
5857recnd 10407 . . . . 5 (𝜑𝐿 ∈ ℂ)
59 0red 10382 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
6051rpgt0d 12188 . . . . . . 7 (𝜑 → 0 < 𝑆)
6153simprbi 492 . . . . . . . . . 10 ((𝑇𝑧) ∈ (0[,)+∞) → 0 ≤ (𝑇𝑧))
6237, 61syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑇𝑧))
6352, 55addge01d 10965 . . . . . . . . 9 (𝜑 → (0 ≤ (𝑇𝑧) ↔ 𝑆 ≤ (𝑆 + (𝑇𝑧))))
6462, 63mpbid 224 . . . . . . . 8 (𝜑𝑆 ≤ (𝑆 + (𝑇𝑧)))
6564, 50breqtrrd 4916 . . . . . . 7 (𝜑𝑆𝐿)
6659, 52, 57, 60, 65ltletrd 10538 . . . . . 6 (𝜑 → 0 < 𝐿)
6766gt0ne0d 10941 . . . . 5 (𝜑𝐿 ≠ 0)
6830, 42, 58, 67divdird 11191 . . . 4 (𝜑 → (((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) + ((𝑇𝑧) · (𝑋𝑧))) / 𝐿) = (((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝐿) + (((𝑇𝑧) · (𝑋𝑧)) / 𝐿)))
69 cnfldbas 20150 . . . . . . 7 ℂ = (Base‘ℂfld)
70 cnfldadd 20151 . . . . . . 7 + = (+g‘ℂfld)
71 ringcmn 18972 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
722, 71mp1i 13 . . . . . . 7 (𝜑 → ℂfld ∈ CMnd)
737sselda 3821 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑥𝐴)
7416ffvelrnda 6625 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑇𝑥) ∈ (0[,)+∞))
7573, 74syldan 585 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ (0[,)+∞))
7632, 75sseldi 3819 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ ℂ)
7721adantr 474 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝐷 ⊆ ℝ)
7820ffvelrnda 6625 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑋𝑥) ∈ 𝐷)
7973, 78syldan 585 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (𝑋𝑥) ∈ 𝐷)
8077, 79sseldd 3822 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑋𝑥) ∈ ℝ)
8180recnd 10407 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑋𝑥) ∈ ℂ)
8276, 81mulcld 10399 . . . . . . 7 ((𝜑𝑥𝐵) → ((𝑇𝑥) · (𝑋𝑥)) ∈ ℂ)
83 fveq2 6448 . . . . . . . 8 (𝑥 = 𝑧 → (𝑇𝑥) = (𝑇𝑧))
84 fveq2 6448 . . . . . . . 8 (𝑥 = 𝑧 → (𝑋𝑥) = (𝑋𝑧))
8583, 84oveq12d 6942 . . . . . . 7 (𝑥 = 𝑧 → ((𝑇𝑥) · (𝑋𝑥)) = ((𝑇𝑧) · (𝑋𝑧)))
8669, 70, 72, 9, 82, 36, 47, 42, 85gsumunsn 18749 . . . . . 6 (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝑋𝑥)))) = ((ℂfld Σg (𝑥𝐵 ↦ ((𝑇𝑥) · (𝑋𝑥)))) + ((𝑇𝑧) · (𝑋𝑧))))
8716feqmptd 6511 . . . . . . . . . 10 (𝜑𝑇 = (𝑥𝐴 ↦ (𝑇𝑥)))
8820feqmptd 6511 . . . . . . . . . 10 (𝜑𝑋 = (𝑥𝐴 ↦ (𝑋𝑥)))
895, 74, 78, 87, 88offval2 7193 . . . . . . . . 9 (𝜑 → (𝑇𝑓 · 𝑋) = (𝑥𝐴 ↦ ((𝑇𝑥) · (𝑋𝑥))))
9089reseq1d 5643 . . . . . . . 8 (𝜑 → ((𝑇𝑓 · 𝑋) ↾ (𝐵 ∪ {𝑧})) = ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝑋𝑥))) ↾ (𝐵 ∪ {𝑧})))
916resmptd 5704 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝑋𝑥))) ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝑋𝑥))))
9290, 91eqtrd 2814 . . . . . . 7 (𝜑 → ((𝑇𝑓 · 𝑋) ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝑋𝑥))))
9392oveq2d 6940 . . . . . 6 (𝜑 → (ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝑋𝑥)))))
9489reseq1d 5643 . . . . . . . . 9 (𝜑 → ((𝑇𝑓 · 𝑋) ↾ 𝐵) = ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝑋𝑥))) ↾ 𝐵))
957resmptd 5704 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝑋𝑥))) ↾ 𝐵) = (𝑥𝐵 ↦ ((𝑇𝑥) · (𝑋𝑥))))
9694, 95eqtrd 2814 . . . . . . . 8 (𝜑 → ((𝑇𝑓 · 𝑋) ↾ 𝐵) = (𝑥𝐵 ↦ ((𝑇𝑥) · (𝑋𝑥))))
9796oveq2d 6940 . . . . . . 7 (𝜑 → (ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) = (ℂfld Σg (𝑥𝐵 ↦ ((𝑇𝑥) · (𝑋𝑥)))))
9897oveq1d 6939 . . . . . 6 (𝜑 → ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) + ((𝑇𝑧) · (𝑋𝑧))) = ((ℂfld Σg (𝑥𝐵 ↦ ((𝑇𝑥) · (𝑋𝑥)))) + ((𝑇𝑧) · (𝑋𝑧))))
9986, 93, 983eqtr4d 2824 . . . . 5 (𝜑 → (ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) + ((𝑇𝑧) · (𝑋𝑧))))
10099oveq1d 6939 . . . 4 (𝜑 → ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) = (((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) + ((𝑇𝑧) · (𝑋𝑧))) / 𝐿))
10152recnd 10407 . . . . . 6 (𝜑𝑆 ∈ ℂ)
10251rpne0d 12190 . . . . . 6 (𝜑𝑆 ≠ 0)
10330, 101, 58, 102, 67dmdcand 11182 . . . . 5 (𝜑 → ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) = ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝐿))
10458, 101, 58, 67divsubdird 11192 . . . . . . . 8 (𝜑 → ((𝐿𝑆) / 𝐿) = ((𝐿 / 𝐿) − (𝑆 / 𝐿)))
105101, 38, 50mvrladdd 10790 . . . . . . . . 9 (𝜑 → (𝐿𝑆) = (𝑇𝑧))
106105oveq1d 6939 . . . . . . . 8 (𝜑 → ((𝐿𝑆) / 𝐿) = ((𝑇𝑧) / 𝐿))
10758, 67dividd 11151 . . . . . . . . 9 (𝜑 → (𝐿 / 𝐿) = 1)
108107oveq1d 6939 . . . . . . . 8 (𝜑 → ((𝐿 / 𝐿) − (𝑆 / 𝐿)) = (1 − (𝑆 / 𝐿)))
109104, 106, 1083eqtr3rd 2823 . . . . . . 7 (𝜑 → (1 − (𝑆 / 𝐿)) = ((𝑇𝑧) / 𝐿))
110109oveq1d 6939 . . . . . 6 (𝜑 → ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)) = (((𝑇𝑧) / 𝐿) · (𝑋𝑧)))
11138, 41, 58, 67div23d 11190 . . . . . 6 (𝜑 → (((𝑇𝑧) · (𝑋𝑧)) / 𝐿) = (((𝑇𝑧) / 𝐿) · (𝑋𝑧)))
112110, 111eqtr4d 2817 . . . . 5 (𝜑 → ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)) = (((𝑇𝑧) · (𝑋𝑧)) / 𝐿))
113103, 112oveq12d 6942 . . . 4 (𝜑 → (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧))) = (((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝐿) + (((𝑇𝑧) · (𝑋𝑧)) / 𝐿)))
11468, 100, 1133eqtr4d 2824 . . 3 (𝜑 → ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) = (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧))))
115 jensenlem.4 . . . . 5 (𝜑 → ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷)
11652, 57, 67redivcld 11205 . . . . . 6 (𝜑 → (𝑆 / 𝐿) ∈ ℝ)
11751rpge0d 12189 . . . . . . 7 (𝜑 → 0 ≤ 𝑆)
118 divge0 11248 . . . . . . 7 (((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)) → 0 ≤ (𝑆 / 𝐿))
11952, 117, 57, 66, 118syl22anc 829 . . . . . 6 (𝜑 → 0 ≤ (𝑆 / 𝐿))
12058mulid1d 10396 . . . . . . . 8 (𝜑 → (𝐿 · 1) = 𝐿)
12165, 120breqtrrd 4916 . . . . . . 7 (𝜑𝑆 ≤ (𝐿 · 1))
122 1red 10379 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
123 ledivmul 11255 . . . . . . . 8 ((𝑆 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)) → ((𝑆 / 𝐿) ≤ 1 ↔ 𝑆 ≤ (𝐿 · 1)))
12452, 122, 57, 66, 123syl112anc 1442 . . . . . . 7 (𝜑 → ((𝑆 / 𝐿) ≤ 1 ↔ 𝑆 ≤ (𝐿 · 1)))
125121, 124mpbird 249 . . . . . 6 (𝜑 → (𝑆 / 𝐿) ≤ 1)
126 elicc01 12608 . . . . . 6 ((𝑆 / 𝐿) ∈ (0[,]1) ↔ ((𝑆 / 𝐿) ∈ ℝ ∧ 0 ≤ (𝑆 / 𝐿) ∧ (𝑆 / 𝐿) ≤ 1))
127116, 119, 125, 126syl3anbrc 1400 . . . . 5 (𝜑 → (𝑆 / 𝐿) ∈ (0[,]1))
128115, 39, 1273jca 1119 . . . 4 (𝜑 → (((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷 ∧ (𝑋𝑧) ∈ 𝐷 ∧ (𝑆 / 𝐿) ∈ (0[,]1)))
12921, 44cvxcl 25167 . . . 4 ((𝜑 ∧ (((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷 ∧ (𝑋𝑧) ∈ 𝐷 ∧ (𝑆 / 𝐿) ∈ (0[,]1))) → (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧))) ∈ 𝐷)
130128, 129mpdan 677 . . 3 (𝜑 → (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧))) ∈ 𝐷)
131114, 130eqeltrd 2859 . 2 (𝜑 → ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) ∈ 𝐷)
13243, 130ffvelrnd 6626 . . . 4 (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ∈ ℝ)
13343, 115ffvelrnd 6626 . . . . . 6 (𝜑 → (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) ∈ ℝ)
134116, 133remulcld 10409 . . . . 5 (𝜑 → ((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) ∈ ℝ)
13543, 39ffvelrnd 6626 . . . . . . 7 (𝜑 → (𝐹‘(𝑋𝑧)) ∈ ℝ)
13655, 135remulcld 10409 . . . . . 6 (𝜑 → ((𝑇𝑧) · (𝐹‘(𝑋𝑧))) ∈ ℝ)
137136, 57, 67redivcld 11205 . . . . 5 (𝜑 → (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿) ∈ ℝ)
138134, 137readdcld 10408 . . . 4 (𝜑 → (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)) ∈ ℝ)
139 fco 6310 . . . . . . . . . . 11 ((𝐹:𝐷⟶ℝ ∧ 𝑋:𝐴𝐷) → (𝐹𝑋):𝐴⟶ℝ)
14043, 20, 139syl2anc 579 . . . . . . . . . 10 (𝜑 → (𝐹𝑋):𝐴⟶ℝ)
14115, 19, 140, 5, 5, 23off 7191 . . . . . . . . 9 (𝜑 → (𝑇𝑓 · (𝐹𝑋)):𝐴⟶ℝ)
142141, 7fssresd 6323 . . . . . . . 8 (𝜑 → ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵):𝐵⟶ℝ)
143142, 9, 27fdmfifsupp 8575 . . . . . . . 8 (𝜑 → ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵) finSupp 0)
1441, 4, 9, 13, 142, 143gsumsubgcl 18710 . . . . . . 7 (𝜑 → (ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) ∈ ℝ)
145144, 52, 102redivcld 11205 . . . . . 6 (𝜑 → ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆) ∈ ℝ)
146116, 145remulcld 10409 . . . . 5 (𝜑 → ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) ∈ ℝ)
147 1re 10378 . . . . . . 7 1 ∈ ℝ
148 resubcl 10689 . . . . . . 7 ((1 ∈ ℝ ∧ (𝑆 / 𝐿) ∈ ℝ) → (1 − (𝑆 / 𝐿)) ∈ ℝ)
149147, 116, 148sylancr 581 . . . . . 6 (𝜑 → (1 − (𝑆 / 𝐿)) ∈ ℝ)
150149, 135remulcld 10409 . . . . 5 (𝜑 → ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))) ∈ ℝ)
151146, 150readdcld 10408 . . . 4 (𝜑 → (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))) ∈ ℝ)
152 oveq2 6932 . . . . . . . . . . 11 (𝑥 = ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆) → (𝑡 · 𝑥) = (𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)))
153152fvoveq1d 6946 . . . . . . . . . 10 (𝑥 = ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦))))
154 fveq2 6448 . . . . . . . . . . . 12 (𝑥 = ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆) → (𝐹𝑥) = (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)))
155154oveq2d 6940 . . . . . . . . . . 11 (𝑥 = ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆) → (𝑡 · (𝐹𝑥)) = (𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))))
156155oveq1d 6939 . . . . . . . . . 10 (𝑥 = ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆) → ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))) = ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹𝑦))))
157153, 156breq12d 4901 . . . . . . . . 9 (𝑥 = ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆) → ((𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))) ↔ (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹𝑦)))))
158157imbi2d 332 . . . . . . . 8 (𝑥 = ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆) → ((𝜑 → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦)))) ↔ (𝜑 → (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹𝑦))))))
159 oveq2 6932 . . . . . . . . . . . 12 (𝑦 = (𝑋𝑧) → ((1 − 𝑡) · 𝑦) = ((1 − 𝑡) · (𝑋𝑧)))
160159oveq2d 6940 . . . . . . . . . . 11 (𝑦 = (𝑋𝑧) → ((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧))))
161160fveq2d 6452 . . . . . . . . . 10 (𝑦 = (𝑋𝑧) → (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦))) = (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧)))))
162 fveq2 6448 . . . . . . . . . . . 12 (𝑦 = (𝑋𝑧) → (𝐹𝑦) = (𝐹‘(𝑋𝑧)))
163162oveq2d 6940 . . . . . . . . . . 11 (𝑦 = (𝑋𝑧) → ((1 − 𝑡) · (𝐹𝑦)) = ((1 − 𝑡) · (𝐹‘(𝑋𝑧))))
164163oveq2d 6940 . . . . . . . . . 10 (𝑦 = (𝑋𝑧) → ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹𝑦))) = ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹‘(𝑋𝑧)))))
165161, 164breq12d 4901 . . . . . . . . 9 (𝑦 = (𝑋𝑧) → ((𝐹‘((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹𝑦))) ↔ (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧)))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹‘(𝑋𝑧))))))
166165imbi2d 332 . . . . . . . 8 (𝑦 = (𝑋𝑧) → ((𝜑 → (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹𝑦)))) ↔ (𝜑 → (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧)))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹‘(𝑋𝑧)))))))
167 oveq1 6931 . . . . . . . . . . . 12 (𝑡 = (𝑆 / 𝐿) → (𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) = ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)))
168 oveq2 6932 . . . . . . . . . . . . 13 (𝑡 = (𝑆 / 𝐿) → (1 − 𝑡) = (1 − (𝑆 / 𝐿)))
169168oveq1d 6939 . . . . . . . . . . . 12 (𝑡 = (𝑆 / 𝐿) → ((1 − 𝑡) · (𝑋𝑧)) = ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))
170167, 169oveq12d 6942 . . . . . . . . . . 11 (𝑡 = (𝑆 / 𝐿) → ((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧))) = (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧))))
171170fveq2d 6452 . . . . . . . . . 10 (𝑡 = (𝑆 / 𝐿) → (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧)))) = (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))))
172 oveq1 6931 . . . . . . . . . . 11 (𝑡 = (𝑆 / 𝐿) → (𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) = ((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))))
173168oveq1d 6939 . . . . . . . . . . 11 (𝑡 = (𝑆 / 𝐿) → ((1 − 𝑡) · (𝐹‘(𝑋𝑧))) = ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))))
174172, 173oveq12d 6942 . . . . . . . . . 10 (𝑡 = (𝑆 / 𝐿) → ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹‘(𝑋𝑧)))) = (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
175171, 174breq12d 4901 . . . . . . . . 9 (𝑡 = (𝑆 / 𝐿) → ((𝐹‘((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧)))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹‘(𝑋𝑧)))) ↔ (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))))))
176175imbi2d 332 . . . . . . . 8 (𝑡 = (𝑆 / 𝐿) → ((𝜑 → (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧)))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹‘(𝑋𝑧))))) ↔ (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))))
17746expcom 404 . . . . . . . 8 ((𝑥𝐷𝑦𝐷𝑡 ∈ (0[,]1)) → (𝜑 → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦)))))
178158, 166, 176, 177vtocl3ga 3478 . . . . . . 7 ((((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷 ∧ (𝑋𝑧) ∈ 𝐷 ∧ (𝑆 / 𝐿) ∈ (0[,]1)) → (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))))))
179115, 39, 127, 178syl3anc 1439 . . . . . 6 (𝜑 → (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))))))
180179pm2.43i 52 . . . . 5 (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
181109oveq1d 6939 . . . . . . 7 (𝜑 → ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))) = (((𝑇𝑧) / 𝐿) · (𝐹‘(𝑋𝑧))))
182135recnd 10407 . . . . . . . 8 (𝜑 → (𝐹‘(𝑋𝑧)) ∈ ℂ)
18338, 182, 58, 67div23d 11190 . . . . . . 7 (𝜑 → (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿) = (((𝑇𝑧) / 𝐿) · (𝐹‘(𝑋𝑧))))
184181, 183eqtr4d 2817 . . . . . 6 (𝜑 → ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))) = (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿))
185184oveq2d 6940 . . . . 5 (𝜑 → (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))) = (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)))
186180, 185breqtrd 4914 . . . 4 (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)))
187183, 181eqtr4d 2817 . . . . . 6 (𝜑 → (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿) = ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))))
188187oveq2d 6940 . . . . 5 (𝜑 → (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)) = (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
189 jensenlem.5 . . . . . . 7 (𝜑 → (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) ≤ ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆))
19052, 57, 60, 66divgt0d 11315 . . . . . . . 8 (𝜑 → 0 < (𝑆 / 𝐿))
191 lemul2 11232 . . . . . . . 8 (((𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) ∈ ℝ ∧ ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆) ∈ ℝ ∧ ((𝑆 / 𝐿) ∈ ℝ ∧ 0 < (𝑆 / 𝐿))) → ((𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) ≤ ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆) ↔ ((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) ≤ ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆))))
192133, 145, 116, 190, 191syl112anc 1442 . . . . . . 7 (𝜑 → ((𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) ≤ ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆) ↔ ((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) ≤ ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆))))
193189, 192mpbid 224 . . . . . 6 (𝜑 → ((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) ≤ ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)))
194134, 146, 150, 193leadd1dd 10991 . . . . 5 (𝜑 → (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
195188, 194eqbrtrd 4910 . . . 4 (𝜑 → (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆))) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)) ≤ (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
196132, 138, 151, 186, 195letrd 10535 . . 3 (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
197114fveq2d 6452 . . 3 (𝜑 → (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)) = (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))))
198144recnd 10407 . . . . 5 (𝜑 → (ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) ∈ ℂ)
199136recnd 10407 . . . . 5 (𝜑 → ((𝑇𝑧) · (𝐹‘(𝑋𝑧))) ∈ ℂ)
200198, 199, 58, 67divdird 11191 . . . 4 (𝜑 → (((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) + ((𝑇𝑧) · (𝐹‘(𝑋𝑧)))) / 𝐿) = (((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝐿) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)))
20117, 74sseldi 3819 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑇𝑥) ∈ ℝ)
20243ffvelrnda 6625 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝑥) ∈ 𝐷) → (𝐹‘(𝑋𝑥)) ∈ ℝ)
20378, 202syldan 585 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐹‘(𝑋𝑥)) ∈ ℝ)
204201, 203remulcld 10409 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑇𝑥) · (𝐹‘(𝑋𝑥))) ∈ ℝ)
205204recnd 10407 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑇𝑥) · (𝐹‘(𝑋𝑥))) ∈ ℂ)
20673, 205syldan 585 . . . . . . 7 ((𝜑𝑥𝐵) → ((𝑇𝑥) · (𝐹‘(𝑋𝑥))) ∈ ℂ)
20784fveq2d 6452 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹‘(𝑋𝑥)) = (𝐹‘(𝑋𝑧)))
20883, 207oveq12d 6942 . . . . . . 7 (𝑥 = 𝑧 → ((𝑇𝑥) · (𝐹‘(𝑋𝑥))) = ((𝑇𝑧) · (𝐹‘(𝑋𝑧))))
20969, 70, 72, 9, 206, 36, 47, 199, 208gsumunsn 18749 . . . . . 6 (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥))))) = ((ℂfld Σg (𝑥𝐵 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥))))) + ((𝑇𝑧) · (𝐹‘(𝑋𝑧)))))
21043feqmptd 6511 . . . . . . . . . . 11 (𝜑𝐹 = (𝑦𝐷 ↦ (𝐹𝑦)))
211 fveq2 6448 . . . . . . . . . . 11 (𝑦 = (𝑋𝑥) → (𝐹𝑦) = (𝐹‘(𝑋𝑥)))
21278, 88, 210, 211fmptco 6663 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) = (𝑥𝐴 ↦ (𝐹‘(𝑋𝑥))))
2135, 74, 203, 87, 212offval2 7193 . . . . . . . . 9 (𝜑 → (𝑇𝑓 · (𝐹𝑋)) = (𝑥𝐴 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))))
214213reseq1d 5643 . . . . . . . 8 (𝜑 → ((𝑇𝑓 · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧})) = ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))) ↾ (𝐵 ∪ {𝑧})))
2156resmptd 5704 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))) ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))))
216214, 215eqtrd 2814 . . . . . . 7 (𝜑 → ((𝑇𝑓 · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))))
217216oveq2d 6940 . . . . . 6 (𝜑 → (ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥))))))
218213reseq1d 5643 . . . . . . . . 9 (𝜑 → ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵) = ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))) ↾ 𝐵))
2197resmptd 5704 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))) ↾ 𝐵) = (𝑥𝐵 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))))
220218, 219eqtrd 2814 . . . . . . . 8 (𝜑 → ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵) = (𝑥𝐵 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))))
221220oveq2d 6940 . . . . . . 7 (𝜑 → (ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) = (ℂfld Σg (𝑥𝐵 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥))))))
222221oveq1d 6939 . . . . . 6 (𝜑 → ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) + ((𝑇𝑧) · (𝐹‘(𝑋𝑧)))) = ((ℂfld Σg (𝑥𝐵 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥))))) + ((𝑇𝑧) · (𝐹‘(𝑋𝑧)))))
223209, 217, 2223eqtr4d 2824 . . . . 5 (𝜑 → (ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) + ((𝑇𝑧) · (𝐹‘(𝑋𝑧)))))
224223oveq1d 6939 . . . 4 (𝜑 → ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) = (((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) + ((𝑇𝑧) · (𝐹‘(𝑋𝑧)))) / 𝐿))
225198, 101, 58, 102, 67dmdcand 11182 . . . . 5 (𝜑 → ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) = ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝐿))
226225, 184oveq12d 6942 . . . 4 (𝜑 → (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))) = (((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝐿) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)))
227200, 224, 2263eqtr4d 2824 . . 3 (𝜑 → ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) = (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
228196, 197, 2273brtr4d 4920 . 2 (𝜑 → (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)) ≤ ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿))
229131, 228jca 507 1 (𝜑 → (((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) ∈ 𝐷 ∧ (𝐹‘((ℂfld Σg ((𝑇𝑓 · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)) ≤ ((ℂfld Σg ((𝑇𝑓 · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  Vcvv 3398  cun 3790  wss 3792  {csn 4398   class class class wbr 4888  cmpt 4967  cres 5359  ccom 5361  wf 6133  cfv 6137  (class class class)co 6924  𝑓 cof 7174  Fincfn 8243  cc 10272  cr 10273  0cc0 10274  1c1 10275   + caddc 10277   · cmul 10279  +∞cpnf 10410   < clt 10413  cle 10414  cmin 10608   / cdiv 11034  +crp 12141  [,)cico 12493  [,]cicc 12494   Σg cgsu 16491  SubGrpcsubg 17976  CMndccmn 18583  Abelcabl 18584  Ringcrg 18938  DivRingcdr 19143  SubRingcsubrg 19172  fldccnfld 20146  fldcrefld 20351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-tpos 7636  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-oi 8706  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-uz 11997  df-rp 12142  df-ico 12497  df-icc 12498  df-fz 12648  df-fzo 12789  df-seq 13124  df-hash 13440  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-starv 16357  df-tset 16361  df-ple 16362  df-ds 16364  df-unif 16365  df-0g 16492  df-gsum 16493  df-mre 16636  df-mrc 16637  df-acs 16639  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-submnd 17726  df-grp 17816  df-minusg 17817  df-mulg 17932  df-subg 17979  df-cntz 18137  df-cmn 18585  df-abl 18586  df-mgp 18881  df-ur 18893  df-ring 18940  df-cring 18941  df-oppr 19014  df-dvdsr 19032  df-unit 19033  df-invr 19063  df-dvr 19074  df-drng 19145  df-subrg 19174  df-cnfld 20147  df-refld 20352
This theorem is referenced by:  jensen  25171
  Copyright terms: Public domain W3C validator