Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  jensenlem2 Structured version   Visualization version   GIF version

Theorem jensenlem2 25571
 Description: Lemma for jensen 25572. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
jensen.1 (𝜑𝐷 ⊆ ℝ)
jensen.2 (𝜑𝐹:𝐷⟶ℝ)
jensen.3 ((𝜑 ∧ (𝑎𝐷𝑏𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷)
jensen.4 (𝜑𝐴 ∈ Fin)
jensen.5 (𝜑𝑇:𝐴⟶(0[,)+∞))
jensen.6 (𝜑𝑋:𝐴𝐷)
jensen.7 (𝜑 → 0 < (ℂfld Σg 𝑇))
jensen.8 ((𝜑 ∧ (𝑥𝐷𝑦𝐷𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))
jensenlem.1 (𝜑 → ¬ 𝑧𝐵)
jensenlem.2 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
jensenlem.s 𝑆 = (ℂfld Σg (𝑇𝐵))
jensenlem.l 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
jensenlem.3 (𝜑𝑆 ∈ ℝ+)
jensenlem.4 (𝜑 → ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷)
jensenlem.5 (𝜑 → (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) ≤ ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆))
Assertion
Ref Expression
jensenlem2 (𝜑 → (((ℂfld Σg ((𝑇f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) ∈ 𝐷 ∧ (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)) ≤ ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)))
Distinct variable groups:   𝑎,𝑏,𝑡,𝑥,𝑦,𝐴   𝐷,𝑎,𝑏,𝑡,𝑥,𝑦   𝜑,𝑎,𝑏,𝑡,𝑥,𝑦   𝐹,𝑎,𝑏,𝑡,𝑥,𝑦   𝑇,𝑎,𝑏,𝑡,𝑥,𝑦   𝑋,𝑎,𝑏,𝑡,𝑥,𝑦   𝑧,𝑎,𝐵,𝑏,𝑡,𝑥,𝑦   𝑡,𝐿,𝑥,𝑦   𝑆,𝑎,𝑏,𝑡,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝐷(𝑧)   𝑆(𝑧)   𝑇(𝑧)   𝐹(𝑧)   𝐿(𝑧,𝑎,𝑏)   𝑋(𝑧)

Proof of Theorem jensenlem2
StepHypRef Expression
1 cnfld0 20113 . . . . . . 7 0 = (0g‘ℂfld)
2 cnring 20111 . . . . . . . 8 fld ∈ Ring
3 ringabl 19324 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ Abel)
42, 3mp1i 13 . . . . . . 7 (𝜑 → ℂfld ∈ Abel)
5 jensen.4 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
6 jensenlem.2 . . . . . . . . 9 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
76unssad 4138 . . . . . . . 8 (𝜑𝐵𝐴)
85, 7ssfid 8729 . . . . . . 7 (𝜑𝐵 ∈ Fin)
9 resubdrg 20295 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
109simpli 487 . . . . . . . 8 ℝ ∈ (SubRing‘ℂfld)
11 subrgsubg 19532 . . . . . . . 8 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
1210, 11mp1i 13 . . . . . . 7 (𝜑 → ℝ ∈ (SubGrp‘ℂfld))
13 remulcl 10611 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1413adantl 485 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
15 jensen.5 . . . . . . . . . 10 (𝜑𝑇:𝐴⟶(0[,)+∞))
16 rge0ssre 12834 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
17 fss 6508 . . . . . . . . . 10 ((𝑇:𝐴⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝑇:𝐴⟶ℝ)
1815, 16, 17sylancl 589 . . . . . . . . 9 (𝜑𝑇:𝐴⟶ℝ)
19 jensen.6 . . . . . . . . . 10 (𝜑𝑋:𝐴𝐷)
20 jensen.1 . . . . . . . . . 10 (𝜑𝐷 ⊆ ℝ)
2119, 20fssd 6509 . . . . . . . . 9 (𝜑𝑋:𝐴⟶ℝ)
22 inidm 4169 . . . . . . . . 9 (𝐴𝐴) = 𝐴
2314, 18, 21, 5, 5, 22off 7409 . . . . . . . 8 (𝜑 → (𝑇f · 𝑋):𝐴⟶ℝ)
2423, 7fssresd 6526 . . . . . . 7 (𝜑 → ((𝑇f · 𝑋) ↾ 𝐵):𝐵⟶ℝ)
25 c0ex 10624 . . . . . . . . 9 0 ∈ V
2625a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ V)
2724, 8, 26fdmfifsupp 8831 . . . . . . 7 (𝜑 → ((𝑇f · 𝑋) ↾ 𝐵) finSupp 0)
281, 4, 8, 12, 24, 27gsumsubgcl 19031 . . . . . 6 (𝜑 → (ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) ∈ ℝ)
2928recnd 10658 . . . . 5 (𝜑 → (ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) ∈ ℂ)
30 ax-resscn 10583 . . . . . . . 8 ℝ ⊆ ℂ
3116, 30sstri 3951 . . . . . . 7 (0[,)+∞) ⊆ ℂ
326unssbd 4139 . . . . . . . . 9 (𝜑 → {𝑧} ⊆ 𝐴)
33 vex 3472 . . . . . . . . . 10 𝑧 ∈ V
3433snss 4692 . . . . . . . . 9 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
3532, 34sylibr 237 . . . . . . . 8 (𝜑𝑧𝐴)
3615, 35ffvelrnd 6834 . . . . . . 7 (𝜑 → (𝑇𝑧) ∈ (0[,)+∞))
3731, 36sseldi 3940 . . . . . 6 (𝜑 → (𝑇𝑧) ∈ ℂ)
3819, 35ffvelrnd 6834 . . . . . . . 8 (𝜑 → (𝑋𝑧) ∈ 𝐷)
3920, 38sseldd 3943 . . . . . . 7 (𝜑 → (𝑋𝑧) ∈ ℝ)
4039recnd 10658 . . . . . 6 (𝜑 → (𝑋𝑧) ∈ ℂ)
4137, 40mulcld 10650 . . . . 5 (𝜑 → ((𝑇𝑧) · (𝑋𝑧)) ∈ ℂ)
42 jensen.2 . . . . . . . 8 (𝜑𝐹:𝐷⟶ℝ)
43 jensen.3 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐷𝑏𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷)
44 jensen.7 . . . . . . . 8 (𝜑 → 0 < (ℂfld Σg 𝑇))
45 jensen.8 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐷𝑦𝐷𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))
46 jensenlem.1 . . . . . . . 8 (𝜑 → ¬ 𝑧𝐵)
47 jensenlem.s . . . . . . . 8 𝑆 = (ℂfld Σg (𝑇𝐵))
48 jensenlem.l . . . . . . . 8 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
4920, 42, 43, 5, 15, 19, 44, 45, 46, 6, 47, 48jensenlem1 25570 . . . . . . 7 (𝜑𝐿 = (𝑆 + (𝑇𝑧)))
50 jensenlem.3 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ+)
5150rpred 12419 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
52 elrege0 12832 . . . . . . . . . 10 ((𝑇𝑧) ∈ (0[,)+∞) ↔ ((𝑇𝑧) ∈ ℝ ∧ 0 ≤ (𝑇𝑧)))
5352simplbi 501 . . . . . . . . 9 ((𝑇𝑧) ∈ (0[,)+∞) → (𝑇𝑧) ∈ ℝ)
5436, 53syl 17 . . . . . . . 8 (𝜑 → (𝑇𝑧) ∈ ℝ)
5551, 54readdcld 10659 . . . . . . 7 (𝜑 → (𝑆 + (𝑇𝑧)) ∈ ℝ)
5649, 55eqeltrd 2914 . . . . . 6 (𝜑𝐿 ∈ ℝ)
5756recnd 10658 . . . . 5 (𝜑𝐿 ∈ ℂ)
58 0red 10633 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
5950rpgt0d 12422 . . . . . . 7 (𝜑 → 0 < 𝑆)
6052simprbi 500 . . . . . . . . . 10 ((𝑇𝑧) ∈ (0[,)+∞) → 0 ≤ (𝑇𝑧))
6136, 60syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑇𝑧))
6251, 54addge01d 11217 . . . . . . . . 9 (𝜑 → (0 ≤ (𝑇𝑧) ↔ 𝑆 ≤ (𝑆 + (𝑇𝑧))))
6361, 62mpbid 235 . . . . . . . 8 (𝜑𝑆 ≤ (𝑆 + (𝑇𝑧)))
6463, 49breqtrrd 5070 . . . . . . 7 (𝜑𝑆𝐿)
6558, 51, 56, 59, 64ltletrd 10789 . . . . . 6 (𝜑 → 0 < 𝐿)
6665gt0ne0d 11193 . . . . 5 (𝜑𝐿 ≠ 0)
6729, 41, 57, 66divdird 11443 . . . 4 (𝜑 → (((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) + ((𝑇𝑧) · (𝑋𝑧))) / 𝐿) = (((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝐿) + (((𝑇𝑧) · (𝑋𝑧)) / 𝐿)))
68 cnfldbas 20093 . . . . . . 7 ℂ = (Base‘ℂfld)
69 cnfldadd 20094 . . . . . . 7 + = (+g‘ℂfld)
70 ringcmn 19325 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
712, 70mp1i 13 . . . . . . 7 (𝜑 → ℂfld ∈ CMnd)
727sselda 3942 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑥𝐴)
7315ffvelrnda 6833 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑇𝑥) ∈ (0[,)+∞))
7472, 73syldan 594 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ (0[,)+∞))
7531, 74sseldi 3940 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ ℂ)
7620adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝐷 ⊆ ℝ)
7719ffvelrnda 6833 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑋𝑥) ∈ 𝐷)
7872, 77syldan 594 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (𝑋𝑥) ∈ 𝐷)
7976, 78sseldd 3943 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑋𝑥) ∈ ℝ)
8079recnd 10658 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑋𝑥) ∈ ℂ)
8175, 80mulcld 10650 . . . . . . 7 ((𝜑𝑥𝐵) → ((𝑇𝑥) · (𝑋𝑥)) ∈ ℂ)
82 fveq2 6652 . . . . . . . 8 (𝑥 = 𝑧 → (𝑇𝑥) = (𝑇𝑧))
83 fveq2 6652 . . . . . . . 8 (𝑥 = 𝑧 → (𝑋𝑥) = (𝑋𝑧))
8482, 83oveq12d 7158 . . . . . . 7 (𝑥 = 𝑧 → ((𝑇𝑥) · (𝑋𝑥)) = ((𝑇𝑧) · (𝑋𝑧)))
8568, 69, 71, 8, 81, 35, 46, 41, 84gsumunsn 19071 . . . . . 6 (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝑋𝑥)))) = ((ℂfld Σg (𝑥𝐵 ↦ ((𝑇𝑥) · (𝑋𝑥)))) + ((𝑇𝑧) · (𝑋𝑧))))
8615feqmptd 6715 . . . . . . . . . 10 (𝜑𝑇 = (𝑥𝐴 ↦ (𝑇𝑥)))
8719feqmptd 6715 . . . . . . . . . 10 (𝜑𝑋 = (𝑥𝐴 ↦ (𝑋𝑥)))
885, 73, 77, 86, 87offval2 7411 . . . . . . . . 9 (𝜑 → (𝑇f · 𝑋) = (𝑥𝐴 ↦ ((𝑇𝑥) · (𝑋𝑥))))
8988reseq1d 5830 . . . . . . . 8 (𝜑 → ((𝑇f · 𝑋) ↾ (𝐵 ∪ {𝑧})) = ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝑋𝑥))) ↾ (𝐵 ∪ {𝑧})))
906resmptd 5886 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝑋𝑥))) ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝑋𝑥))))
9189, 90eqtrd 2857 . . . . . . 7 (𝜑 → ((𝑇f · 𝑋) ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝑋𝑥))))
9291oveq2d 7156 . . . . . 6 (𝜑 → (ℂfld Σg ((𝑇f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝑋𝑥)))))
9388reseq1d 5830 . . . . . . . . 9 (𝜑 → ((𝑇f · 𝑋) ↾ 𝐵) = ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝑋𝑥))) ↾ 𝐵))
947resmptd 5886 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝑋𝑥))) ↾ 𝐵) = (𝑥𝐵 ↦ ((𝑇𝑥) · (𝑋𝑥))))
9593, 94eqtrd 2857 . . . . . . . 8 (𝜑 → ((𝑇f · 𝑋) ↾ 𝐵) = (𝑥𝐵 ↦ ((𝑇𝑥) · (𝑋𝑥))))
9695oveq2d 7156 . . . . . . 7 (𝜑 → (ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) = (ℂfld Σg (𝑥𝐵 ↦ ((𝑇𝑥) · (𝑋𝑥)))))
9796oveq1d 7155 . . . . . 6 (𝜑 → ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) + ((𝑇𝑧) · (𝑋𝑧))) = ((ℂfld Σg (𝑥𝐵 ↦ ((𝑇𝑥) · (𝑋𝑥)))) + ((𝑇𝑧) · (𝑋𝑧))))
9885, 92, 973eqtr4d 2867 . . . . 5 (𝜑 → (ℂfld Σg ((𝑇f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) + ((𝑇𝑧) · (𝑋𝑧))))
9998oveq1d 7155 . . . 4 (𝜑 → ((ℂfld Σg ((𝑇f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) = (((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) + ((𝑇𝑧) · (𝑋𝑧))) / 𝐿))
10051recnd 10658 . . . . . 6 (𝜑𝑆 ∈ ℂ)
10150rpne0d 12424 . . . . . 6 (𝜑𝑆 ≠ 0)
10229, 100, 57, 101, 66dmdcand 11434 . . . . 5 (𝜑 → ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) = ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝐿))
10357, 100, 57, 66divsubdird 11444 . . . . . . . 8 (𝜑 → ((𝐿𝑆) / 𝐿) = ((𝐿 / 𝐿) − (𝑆 / 𝐿)))
104100, 37, 49mvrladdd 11042 . . . . . . . . 9 (𝜑 → (𝐿𝑆) = (𝑇𝑧))
105104oveq1d 7155 . . . . . . . 8 (𝜑 → ((𝐿𝑆) / 𝐿) = ((𝑇𝑧) / 𝐿))
10657, 66dividd 11403 . . . . . . . . 9 (𝜑 → (𝐿 / 𝐿) = 1)
107106oveq1d 7155 . . . . . . . 8 (𝜑 → ((𝐿 / 𝐿) − (𝑆 / 𝐿)) = (1 − (𝑆 / 𝐿)))
108103, 105, 1073eqtr3rd 2866 . . . . . . 7 (𝜑 → (1 − (𝑆 / 𝐿)) = ((𝑇𝑧) / 𝐿))
109108oveq1d 7155 . . . . . 6 (𝜑 → ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)) = (((𝑇𝑧) / 𝐿) · (𝑋𝑧)))
11037, 40, 57, 66div23d 11442 . . . . . 6 (𝜑 → (((𝑇𝑧) · (𝑋𝑧)) / 𝐿) = (((𝑇𝑧) / 𝐿) · (𝑋𝑧)))
111109, 110eqtr4d 2860 . . . . 5 (𝜑 → ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)) = (((𝑇𝑧) · (𝑋𝑧)) / 𝐿))
112102, 111oveq12d 7158 . . . 4 (𝜑 → (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧))) = (((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝐿) + (((𝑇𝑧) · (𝑋𝑧)) / 𝐿)))
11367, 99, 1123eqtr4d 2867 . . 3 (𝜑 → ((ℂfld Σg ((𝑇f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) = (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧))))
114 jensenlem.4 . . . . 5 (𝜑 → ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷)
11551, 56, 66redivcld 11457 . . . . . 6 (𝜑 → (𝑆 / 𝐿) ∈ ℝ)
11650rpge0d 12423 . . . . . . 7 (𝜑 → 0 ≤ 𝑆)
117 divge0 11498 . . . . . . 7 (((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)) → 0 ≤ (𝑆 / 𝐿))
11851, 116, 56, 65, 117syl22anc 837 . . . . . 6 (𝜑 → 0 ≤ (𝑆 / 𝐿))
11957mulid1d 10647 . . . . . . . 8 (𝜑 → (𝐿 · 1) = 𝐿)
12064, 119breqtrrd 5070 . . . . . . 7 (𝜑𝑆 ≤ (𝐿 · 1))
121 1red 10631 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
122 ledivmul 11505 . . . . . . . 8 ((𝑆 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)) → ((𝑆 / 𝐿) ≤ 1 ↔ 𝑆 ≤ (𝐿 · 1)))
12351, 121, 56, 65, 122syl112anc 1371 . . . . . . 7 (𝜑 → ((𝑆 / 𝐿) ≤ 1 ↔ 𝑆 ≤ (𝐿 · 1)))
124120, 123mpbird 260 . . . . . 6 (𝜑 → (𝑆 / 𝐿) ≤ 1)
125 elicc01 12844 . . . . . 6 ((𝑆 / 𝐿) ∈ (0[,]1) ↔ ((𝑆 / 𝐿) ∈ ℝ ∧ 0 ≤ (𝑆 / 𝐿) ∧ (𝑆 / 𝐿) ≤ 1))
126115, 118, 124, 125syl3anbrc 1340 . . . . 5 (𝜑 → (𝑆 / 𝐿) ∈ (0[,]1))
127114, 38, 1263jca 1125 . . . 4 (𝜑 → (((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷 ∧ (𝑋𝑧) ∈ 𝐷 ∧ (𝑆 / 𝐿) ∈ (0[,]1)))
12820, 43cvxcl 25568 . . . 4 ((𝜑 ∧ (((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷 ∧ (𝑋𝑧) ∈ 𝐷 ∧ (𝑆 / 𝐿) ∈ (0[,]1))) → (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧))) ∈ 𝐷)
129127, 128mpdan 686 . . 3 (𝜑 → (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧))) ∈ 𝐷)
130113, 129eqeltrd 2914 . 2 (𝜑 → ((ℂfld Σg ((𝑇f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) ∈ 𝐷)
13142, 129ffvelrnd 6834 . . . 4 (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ∈ ℝ)
13242, 114ffvelrnd 6834 . . . . . 6 (𝜑 → (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) ∈ ℝ)
133115, 132remulcld 10660 . . . . 5 (𝜑 → ((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) ∈ ℝ)
13442, 38ffvelrnd 6834 . . . . . . 7 (𝜑 → (𝐹‘(𝑋𝑧)) ∈ ℝ)
13554, 134remulcld 10660 . . . . . 6 (𝜑 → ((𝑇𝑧) · (𝐹‘(𝑋𝑧))) ∈ ℝ)
136135, 56, 66redivcld 11457 . . . . 5 (𝜑 → (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿) ∈ ℝ)
137133, 136readdcld 10659 . . . 4 (𝜑 → (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)) ∈ ℝ)
138 fco 6512 . . . . . . . . . . 11 ((𝐹:𝐷⟶ℝ ∧ 𝑋:𝐴𝐷) → (𝐹𝑋):𝐴⟶ℝ)
13942, 19, 138syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝐹𝑋):𝐴⟶ℝ)
14014, 18, 139, 5, 5, 22off 7409 . . . . . . . . 9 (𝜑 → (𝑇f · (𝐹𝑋)):𝐴⟶ℝ)
141140, 7fssresd 6526 . . . . . . . 8 (𝜑 → ((𝑇f · (𝐹𝑋)) ↾ 𝐵):𝐵⟶ℝ)
142141, 8, 26fdmfifsupp 8831 . . . . . . . 8 (𝜑 → ((𝑇f · (𝐹𝑋)) ↾ 𝐵) finSupp 0)
1431, 4, 8, 12, 141, 142gsumsubgcl 19031 . . . . . . 7 (𝜑 → (ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) ∈ ℝ)
144143, 51, 101redivcld 11457 . . . . . 6 (𝜑 → ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆) ∈ ℝ)
145115, 144remulcld 10660 . . . . 5 (𝜑 → ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) ∈ ℝ)
146 1re 10630 . . . . . . 7 1 ∈ ℝ
147 resubcl 10939 . . . . . . 7 ((1 ∈ ℝ ∧ (𝑆 / 𝐿) ∈ ℝ) → (1 − (𝑆 / 𝐿)) ∈ ℝ)
148146, 115, 147sylancr 590 . . . . . 6 (𝜑 → (1 − (𝑆 / 𝐿)) ∈ ℝ)
149148, 134remulcld 10660 . . . . 5 (𝜑 → ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))) ∈ ℝ)
150145, 149readdcld 10659 . . . 4 (𝜑 → (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))) ∈ ℝ)
151 oveq2 7148 . . . . . . . . . . 11 (𝑥 = ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆) → (𝑡 · 𝑥) = (𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)))
152151fvoveq1d 7162 . . . . . . . . . 10 (𝑥 = ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦))))
153 fveq2 6652 . . . . . . . . . . . 12 (𝑥 = ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆) → (𝐹𝑥) = (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)))
154153oveq2d 7156 . . . . . . . . . . 11 (𝑥 = ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆) → (𝑡 · (𝐹𝑥)) = (𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))))
155154oveq1d 7155 . . . . . . . . . 10 (𝑥 = ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆) → ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))) = ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹𝑦))))
156152, 155breq12d 5055 . . . . . . . . 9 (𝑥 = ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆) → ((𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))) ↔ (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹𝑦)))))
157156imbi2d 344 . . . . . . . 8 (𝑥 = ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆) → ((𝜑 → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦)))) ↔ (𝜑 → (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹𝑦))))))
158 oveq2 7148 . . . . . . . . . . . 12 (𝑦 = (𝑋𝑧) → ((1 − 𝑡) · 𝑦) = ((1 − 𝑡) · (𝑋𝑧)))
159158oveq2d 7156 . . . . . . . . . . 11 (𝑦 = (𝑋𝑧) → ((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧))))
160159fveq2d 6656 . . . . . . . . . 10 (𝑦 = (𝑋𝑧) → (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦))) = (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧)))))
161 fveq2 6652 . . . . . . . . . . . 12 (𝑦 = (𝑋𝑧) → (𝐹𝑦) = (𝐹‘(𝑋𝑧)))
162161oveq2d 7156 . . . . . . . . . . 11 (𝑦 = (𝑋𝑧) → ((1 − 𝑡) · (𝐹𝑦)) = ((1 − 𝑡) · (𝐹‘(𝑋𝑧))))
163162oveq2d 7156 . . . . . . . . . 10 (𝑦 = (𝑋𝑧) → ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹𝑦))) = ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹‘(𝑋𝑧)))))
164160, 163breq12d 5055 . . . . . . . . 9 (𝑦 = (𝑋𝑧) → ((𝐹‘((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹𝑦))) ↔ (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧)))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹‘(𝑋𝑧))))))
165164imbi2d 344 . . . . . . . 8 (𝑦 = (𝑋𝑧) → ((𝜑 → (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹𝑦)))) ↔ (𝜑 → (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧)))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹‘(𝑋𝑧)))))))
166 oveq1 7147 . . . . . . . . . . . 12 (𝑡 = (𝑆 / 𝐿) → (𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) = ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)))
167 oveq2 7148 . . . . . . . . . . . . 13 (𝑡 = (𝑆 / 𝐿) → (1 − 𝑡) = (1 − (𝑆 / 𝐿)))
168167oveq1d 7155 . . . . . . . . . . . 12 (𝑡 = (𝑆 / 𝐿) → ((1 − 𝑡) · (𝑋𝑧)) = ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))
169166, 168oveq12d 7158 . . . . . . . . . . 11 (𝑡 = (𝑆 / 𝐿) → ((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧))) = (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧))))
170169fveq2d 6656 . . . . . . . . . 10 (𝑡 = (𝑆 / 𝐿) → (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧)))) = (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))))
171 oveq1 7147 . . . . . . . . . . 11 (𝑡 = (𝑆 / 𝐿) → (𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) = ((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))))
172167oveq1d 7155 . . . . . . . . . . 11 (𝑡 = (𝑆 / 𝐿) → ((1 − 𝑡) · (𝐹‘(𝑋𝑧))) = ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))))
173171, 172oveq12d 7158 . . . . . . . . . 10 (𝑡 = (𝑆 / 𝐿) → ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹‘(𝑋𝑧)))) = (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
174170, 173breq12d 5055 . . . . . . . . 9 (𝑡 = (𝑆 / 𝐿) → ((𝐹‘((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧)))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹‘(𝑋𝑧)))) ↔ (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))))))
175174imbi2d 344 . . . . . . . 8 (𝑡 = (𝑆 / 𝐿) → ((𝜑 → (𝐹‘((𝑡 · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − 𝑡) · (𝑋𝑧)))) ≤ ((𝑡 · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − 𝑡) · (𝐹‘(𝑋𝑧))))) ↔ (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))))
17645expcom 417 . . . . . . . 8 ((𝑥𝐷𝑦𝐷𝑡 ∈ (0[,]1)) → (𝜑 → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦)))))
177157, 165, 175, 176vtocl3ga 3553 . . . . . . 7 ((((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷 ∧ (𝑋𝑧) ∈ 𝐷 ∧ (𝑆 / 𝐿) ∈ (0[,]1)) → (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))))))
178114, 38, 126, 177syl3anc 1368 . . . . . 6 (𝜑 → (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))))))
179178pm2.43i 52 . . . . 5 (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
180108oveq1d 7155 . . . . . . 7 (𝜑 → ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))) = (((𝑇𝑧) / 𝐿) · (𝐹‘(𝑋𝑧))))
181134recnd 10658 . . . . . . . 8 (𝜑 → (𝐹‘(𝑋𝑧)) ∈ ℂ)
18237, 181, 57, 66div23d 11442 . . . . . . 7 (𝜑 → (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿) = (((𝑇𝑧) / 𝐿) · (𝐹‘(𝑋𝑧))))
183180, 182eqtr4d 2860 . . . . . 6 (𝜑 → ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))) = (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿))
184183oveq2d 7156 . . . . 5 (𝜑 → (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))) = (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)))
185179, 184breqtrd 5068 . . . 4 (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)))
186182, 180eqtr4d 2860 . . . . . 6 (𝜑 → (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿) = ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧))))
187186oveq2d 7156 . . . . 5 (𝜑 → (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)) = (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
188 jensenlem.5 . . . . . . 7 (𝜑 → (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) ≤ ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆))
18951, 56, 59, 65divgt0d 11564 . . . . . . . 8 (𝜑 → 0 < (𝑆 / 𝐿))
190 lemul2 11482 . . . . . . . 8 (((𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) ∈ ℝ ∧ ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆) ∈ ℝ ∧ ((𝑆 / 𝐿) ∈ ℝ ∧ 0 < (𝑆 / 𝐿))) → ((𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) ≤ ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆) ↔ ((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) ≤ ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆))))
191132, 144, 115, 189, 190syl112anc 1371 . . . . . . 7 (𝜑 → ((𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) ≤ ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆) ↔ ((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) ≤ ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆))))
192188, 191mpbid 235 . . . . . 6 (𝜑 → ((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) ≤ ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)))
193133, 145, 149, 192leadd1dd 11243 . . . . 5 (𝜑 → (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
194187, 193eqbrtrd 5064 . . . 4 (𝜑 → (((𝑆 / 𝐿) · (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆))) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)) ≤ (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
195131, 137, 150, 185, 194letrd 10786 . . 3 (𝜑 → (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))) ≤ (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
196113fveq2d 6656 . . 3 (𝜑 → (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)) = (𝐹‘(((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · 𝑋) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝑋𝑧)))))
197143recnd 10658 . . . . 5 (𝜑 → (ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) ∈ ℂ)
198135recnd 10658 . . . . 5 (𝜑 → ((𝑇𝑧) · (𝐹‘(𝑋𝑧))) ∈ ℂ)
199197, 198, 57, 66divdird 11443 . . . 4 (𝜑 → (((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) + ((𝑇𝑧) · (𝐹‘(𝑋𝑧)))) / 𝐿) = (((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝐿) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)))
20016, 73sseldi 3940 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑇𝑥) ∈ ℝ)
20142ffvelrnda 6833 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝑥) ∈ 𝐷) → (𝐹‘(𝑋𝑥)) ∈ ℝ)
20277, 201syldan 594 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐹‘(𝑋𝑥)) ∈ ℝ)
203200, 202remulcld 10660 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑇𝑥) · (𝐹‘(𝑋𝑥))) ∈ ℝ)
204203recnd 10658 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑇𝑥) · (𝐹‘(𝑋𝑥))) ∈ ℂ)
20572, 204syldan 594 . . . . . . 7 ((𝜑𝑥𝐵) → ((𝑇𝑥) · (𝐹‘(𝑋𝑥))) ∈ ℂ)
20683fveq2d 6656 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹‘(𝑋𝑥)) = (𝐹‘(𝑋𝑧)))
20782, 206oveq12d 7158 . . . . . . 7 (𝑥 = 𝑧 → ((𝑇𝑥) · (𝐹‘(𝑋𝑥))) = ((𝑇𝑧) · (𝐹‘(𝑋𝑧))))
20868, 69, 71, 8, 205, 35, 46, 198, 207gsumunsn 19071 . . . . . 6 (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥))))) = ((ℂfld Σg (𝑥𝐵 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥))))) + ((𝑇𝑧) · (𝐹‘(𝑋𝑧)))))
20942feqmptd 6715 . . . . . . . . . . 11 (𝜑𝐹 = (𝑦𝐷 ↦ (𝐹𝑦)))
210 fveq2 6652 . . . . . . . . . . 11 (𝑦 = (𝑋𝑥) → (𝐹𝑦) = (𝐹‘(𝑋𝑥)))
21177, 87, 209, 210fmptco 6873 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) = (𝑥𝐴 ↦ (𝐹‘(𝑋𝑥))))
2125, 73, 202, 86, 211offval2 7411 . . . . . . . . 9 (𝜑 → (𝑇f · (𝐹𝑋)) = (𝑥𝐴 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))))
213212reseq1d 5830 . . . . . . . 8 (𝜑 → ((𝑇f · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧})) = ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))) ↾ (𝐵 ∪ {𝑧})))
2146resmptd 5886 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))) ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))))
215213, 214eqtrd 2857 . . . . . . 7 (𝜑 → ((𝑇f · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))))
216215oveq2d 7156 . . . . . 6 (𝜑 → (ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥))))))
217212reseq1d 5830 . . . . . . . . 9 (𝜑 → ((𝑇f · (𝐹𝑋)) ↾ 𝐵) = ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))) ↾ 𝐵))
2187resmptd 5886 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))) ↾ 𝐵) = (𝑥𝐵 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))))
219217, 218eqtrd 2857 . . . . . . . 8 (𝜑 → ((𝑇f · (𝐹𝑋)) ↾ 𝐵) = (𝑥𝐵 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥)))))
220219oveq2d 7156 . . . . . . 7 (𝜑 → (ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) = (ℂfld Σg (𝑥𝐵 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥))))))
221220oveq1d 7155 . . . . . 6 (𝜑 → ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) + ((𝑇𝑧) · (𝐹‘(𝑋𝑧)))) = ((ℂfld Σg (𝑥𝐵 ↦ ((𝑇𝑥) · (𝐹‘(𝑋𝑥))))) + ((𝑇𝑧) · (𝐹‘(𝑋𝑧)))))
222208, 216, 2213eqtr4d 2867 . . . . 5 (𝜑 → (ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) + ((𝑇𝑧) · (𝐹‘(𝑋𝑧)))))
223222oveq1d 7155 . . . 4 (𝜑 → ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) = (((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) + ((𝑇𝑧) · (𝐹‘(𝑋𝑧)))) / 𝐿))
224197, 100, 57, 101, 66dmdcand 11434 . . . . 5 (𝜑 → ((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) = ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝐿))
225224, 183oveq12d 7158 . . . 4 (𝜑 → (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))) = (((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝐿) + (((𝑇𝑧) · (𝐹‘(𝑋𝑧))) / 𝐿)))
226199, 223, 2253eqtr4d 2867 . . 3 (𝜑 → ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) = (((𝑆 / 𝐿) · ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ 𝐵)) / 𝑆)) + ((1 − (𝑆 / 𝐿)) · (𝐹‘(𝑋𝑧)))))
227195, 196, 2263brtr4d 5074 . 2 (𝜑 → (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)) ≤ ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿))
228130, 227jca 515 1 (𝜑 → (((ℂfld Σg ((𝑇f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) ∈ 𝐷 ∧ (𝐹‘((ℂfld Σg ((𝑇f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)) ≤ ((ℂfld Σg ((𝑇f · (𝐹𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114  Vcvv 3469   ∪ cun 3906   ⊆ wss 3908  {csn 4539   class class class wbr 5042   ↦ cmpt 5122   ↾ cres 5534   ∘ ccom 5536  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140   ∘f cof 7392  Fincfn 8496  ℂcc 10524  ℝcr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661   < clt 10664   ≤ cle 10665   − cmin 10859   / cdiv 11286  ℝ+crp 12377  [,)cico 12728  [,]cicc 12729   Σg cgsu 16705  SubGrpcsubg 18264  CMndccmn 18897  Abelcabl 18898  Ringcrg 19288  DivRingcdr 19493  SubRingcsubrg 19522  ℂfldccnfld 20089  ℝfldcrefld 20291 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-0g 16706  df-gsum 16707  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-grp 18097  df-minusg 18098  df-mulg 18216  df-subg 18267  df-cntz 18438  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-ring 19290  df-cring 19291  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19495  df-subrg 19524  df-cnfld 20090  df-refld 20292 This theorem is referenced by:  jensen  25572
 Copyright terms: Public domain W3C validator