![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi1d | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
3anbi1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
3 | 1, 2 | 3anbi12d 1436 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: vtocl3gafOLD 3581 vtocl3gaOLD 3583 axdc4uz 14021 wrdl3s3 14997 relexpindlem 15098 sqrtval 15272 sqreu 15395 coprmprod 16694 mreexexd 17692 iscatd2 17725 lmodprop2d 20938 neiptopnei 23155 hausnei 23351 isreg2 23400 regr1lem2 23763 ustval 24226 ustuqtop4 24268 axtgupdim2 28493 axtgeucl 28494 iscgra 28831 brbtwn 28928 ax5seg 28967 axlowdim 28990 axeuclidlem 28991 wlkonprop 29690 upgr2wlk 29700 upgrf1istrl 29735 elwspths2spth 29996 clwlkclwwlk 30030 clwwlknonel 30123 upgr4cycl4dv4e 30213 extwwlkfab 30380 nvi 30642 br8d 32629 xlt2addrd 32768 isslmd 33190 slmdlema 33191 tgoldbachgt 34656 axtgupdim2ALTV 34661 br8 35735 br6 35736 br4 35737 fvtransport 36013 brcolinear2 36039 colineardim1 36042 fscgr 36061 idinside 36065 brsegle 36089 poimirlem28 37634 caures 37746 iscringd 37984 oposlem 39163 cdleme18d 40277 jm2.27 42996 ichexmpl2 47394 ichnreuop 47396 9gbo 47698 11gbo 47699 |
Copyright terms: Public domain | W3C validator |