| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3anbi1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
| 3 | 1, 2 | 3anbi12d 1439 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: vtocl3gafOLD 3551 vtocl3gaOLD 3553 axdc4uz 13956 wrdl3s3 14935 relexpindlem 15036 sqrtval 15210 sqreu 15334 coprmprod 16638 mreexexd 17616 iscatd2 17649 lmodprop2d 20837 neiptopnei 23026 hausnei 23222 isreg2 23271 regr1lem2 23634 ustval 24097 ustuqtop4 24139 axtgupdim2 28405 axtgeucl 28406 iscgra 28743 brbtwn 28833 ax5seg 28872 axlowdim 28895 axeuclidlem 28896 wlkonprop 29593 upgr2wlk 29603 upgrf1istrl 29638 elwspths2spth 29904 clwlkclwwlk 29938 clwwlknonel 30031 upgr4cycl4dv4e 30121 extwwlkfab 30288 nvi 30550 br8d 32545 xlt2addrd 32689 isslmd 33162 slmdlema 33163 constrllcllem 33749 constrcbvlem 33752 tgoldbachgt 34661 axtgupdim2ALTV 34666 br8 35750 br6 35751 br4 35752 fvtransport 36027 brcolinear2 36053 colineardim1 36056 fscgr 36075 idinside 36079 brsegle 36103 poimirlem28 37649 caures 37761 iscringd 37999 oposlem 39182 cdleme18d 40296 jm2.27 43004 ichexmpl2 47475 ichnreuop 47477 9gbo 47779 11gbo 47780 |
| Copyright terms: Public domain | W3C validator |