| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3anbi1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
| 3 | 1, 2 | 3anbi12d 1439 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: vtocl3gafOLD 3537 vtocl3gaOLD 3539 axdc4uz 13891 wrdl3s3 14869 relexpindlem 14970 sqrtval 15144 sqreu 15268 coprmprod 16572 mreexexd 17554 iscatd2 17587 lmodprop2d 20827 neiptopnei 23017 hausnei 23213 isreg2 23262 regr1lem2 23625 ustval 24088 ustuqtop4 24130 axtgupdim2 28416 axtgeucl 28417 iscgra 28754 brbtwn 28844 ax5seg 28883 axlowdim 28906 axeuclidlem 28907 wlkonprop 29602 upgr2wlk 29612 upgrf1istrl 29647 elwspths2spth 29912 clwlkclwwlk 29946 clwwlknonel 30039 upgr4cycl4dv4e 30129 extwwlkfab 30296 nvi 30558 br8d 32555 xlt2addrd 32702 isslmd 33144 slmdlema 33145 constrllcllem 33719 constrcbvlem 33722 tgoldbachgt 34631 axtgupdim2ALTV 34636 br8 35729 br6 35730 br4 35731 fvtransport 36006 brcolinear2 36032 colineardim1 36035 fscgr 36054 idinside 36058 brsegle 36082 poimirlem28 37628 caures 37740 iscringd 37978 oposlem 39161 cdleme18d 40274 jm2.27 42981 ichexmpl2 47454 ichnreuop 47456 9gbo 47758 11gbo 47759 |
| Copyright terms: Public domain | W3C validator |