| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3anbi1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
| 3 | 1, 2 | 3anbi12d 1439 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: vtocl3gafOLD 3545 vtocl3gaOLD 3547 axdc4uz 13925 wrdl3s3 14904 relexpindlem 15005 sqrtval 15179 sqreu 15303 coprmprod 16607 mreexexd 17585 iscatd2 17618 lmodprop2d 20806 neiptopnei 22995 hausnei 23191 isreg2 23240 regr1lem2 23603 ustval 24066 ustuqtop4 24108 axtgupdim2 28374 axtgeucl 28375 iscgra 28712 brbtwn 28802 ax5seg 28841 axlowdim 28864 axeuclidlem 28865 wlkonprop 29560 upgr2wlk 29570 upgrf1istrl 29605 elwspths2spth 29870 clwlkclwwlk 29904 clwwlknonel 29997 upgr4cycl4dv4e 30087 extwwlkfab 30254 nvi 30516 br8d 32511 xlt2addrd 32655 isslmd 33128 slmdlema 33129 constrllcllem 33715 constrcbvlem 33718 tgoldbachgt 34627 axtgupdim2ALTV 34632 br8 35716 br6 35717 br4 35718 fvtransport 35993 brcolinear2 36019 colineardim1 36022 fscgr 36041 idinside 36045 brsegle 36069 poimirlem28 37615 caures 37727 iscringd 37965 oposlem 39148 cdleme18d 40262 jm2.27 42970 ichexmpl2 47444 ichnreuop 47446 9gbo 47748 11gbo 47749 |
| Copyright terms: Public domain | W3C validator |