MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1d Structured version   Visualization version   GIF version

Theorem 3anbi1d 1440
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3anbi1d (𝜑 → ((𝜓𝜃𝜏) ↔ (𝜒𝜃𝜏)))

Proof of Theorem 3anbi1d
StepHypRef Expression
1 3anbi1d.1 . 2 (𝜑 → (𝜓𝜒))
2 biidd 261 . 2 (𝜑 → (𝜃𝜃))
31, 23anbi12d 1437 1 (𝜑 → ((𝜓𝜃𝜏) ↔ (𝜒𝜃𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  vtocl3gaf  3568  vtocl3ga  3569  axdc4uz  13953  wrdl3s3  14917  relexpindlem  15014  sqrtval  15188  sqreu  15311  coprmprod  16602  mreexexd  17596  iscatd2  17629  lmodprop2d  20678  neiptopnei  22856  hausnei  23052  isreg2  23101  regr1lem2  23464  ustval  23927  ustuqtop4  23969  axtgupdim2  27977  axtgeucl  27978  iscgra  28315  brbtwn  28412  ax5seg  28451  axlowdim  28474  axeuclidlem  28475  wlkonprop  29170  upgr2wlk  29180  upgrf1istrl  29215  elwspths2spth  29476  clwlkclwwlk  29510  clwwlknonel  29603  upgr4cycl4dv4e  29693  extwwlkfab  29860  nvi  30122  br8d  32094  xlt2addrd  32226  isslmd  32605  slmdlema  32606  tgoldbachgt  33961  axtgupdim2ALTV  33966  br8  35018  br6  35019  br4  35020  fvtransport  35296  brcolinear2  35322  colineardim1  35325  fscgr  35344  idinside  35348  brsegle  35372  poimirlem28  36819  caures  36931  iscringd  37169  oposlem  38355  cdleme18d  39469  jm2.27  42049  ichexmpl2  46437  ichnreuop  46439  9gbo  46741  11gbo  46742
  Copyright terms: Public domain W3C validator