MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1d Structured version   Visualization version   GIF version

Theorem 3anbi1d 1440
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3anbi1d (𝜑 → ((𝜓𝜃𝜏) ↔ (𝜒𝜃𝜏)))

Proof of Theorem 3anbi1d
StepHypRef Expression
1 3anbi1d.1 . 2 (𝜑 → (𝜓𝜒))
2 biidd 261 . 2 (𝜑 → (𝜃𝜃))
31, 23anbi12d 1437 1 (𝜑 → ((𝜓𝜃𝜏) ↔ (𝜒𝜃𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  vtocl3gaf  3568  vtocl3ga  3569  axdc4uz  13951  wrdl3s3  14915  relexpindlem  15012  sqrtval  15186  sqreu  15309  coprmprod  16600  mreexexd  17594  iscatd2  17627  lmodprop2d  20539  neiptopnei  22643  hausnei  22839  isreg2  22888  regr1lem2  23251  ustval  23714  ustuqtop4  23756  axtgupdim2  27760  axtgeucl  27761  iscgra  28098  brbtwn  28195  ax5seg  28234  axlowdim  28257  axeuclidlem  28258  wlkonprop  28953  upgr2wlk  28963  upgrf1istrl  28998  elwspths2spth  29259  clwlkclwwlk  29293  clwwlknonel  29386  upgr4cycl4dv4e  29476  extwwlkfab  29643  nvi  29905  br8d  31877  xlt2addrd  32009  isslmd  32388  slmdlema  32389  tgoldbachgt  33744  axtgupdim2ALTV  33749  br8  34795  br6  34796  br4  34797  fvtransport  35073  brcolinear2  35099  colineardim1  35102  fscgr  35121  idinside  35125  brsegle  35149  poimirlem28  36602  caures  36714  iscringd  36952  oposlem  38138  cdleme18d  39252  jm2.27  41829  ichexmpl2  46217  ichnreuop  46219  9gbo  46521  11gbo  46522
  Copyright terms: Public domain W3C validator