MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1d Structured version   Visualization version   GIF version

Theorem 3anbi1d 1442
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3anbi1d (𝜑 → ((𝜓𝜃𝜏) ↔ (𝜒𝜃𝜏)))

Proof of Theorem 3anbi1d
StepHypRef Expression
1 3anbi1d.1 . 2 (𝜑 → (𝜓𝜒))
2 biidd 262 . 2 (𝜑 → (𝜃𝜃))
31, 23anbi12d 1439 1 (𝜑 → ((𝜓𝜃𝜏) ↔ (𝜒𝜃𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  vtocl3gafOLD  3545  vtocl3gaOLD  3547  axdc4uz  13925  wrdl3s3  14904  relexpindlem  15005  sqrtval  15179  sqreu  15303  coprmprod  16607  mreexexd  17585  iscatd2  17618  lmodprop2d  20806  neiptopnei  22995  hausnei  23191  isreg2  23240  regr1lem2  23603  ustval  24066  ustuqtop4  24108  axtgupdim2  28374  axtgeucl  28375  iscgra  28712  brbtwn  28802  ax5seg  28841  axlowdim  28864  axeuclidlem  28865  wlkonprop  29560  upgr2wlk  29570  upgrf1istrl  29605  elwspths2spth  29870  clwlkclwwlk  29904  clwwlknonel  29997  upgr4cycl4dv4e  30087  extwwlkfab  30254  nvi  30516  br8d  32511  xlt2addrd  32655  isslmd  33128  slmdlema  33129  constrllcllem  33715  constrcbvlem  33718  tgoldbachgt  34627  axtgupdim2ALTV  34632  br8  35716  br6  35717  br4  35718  fvtransport  35993  brcolinear2  36019  colineardim1  36022  fscgr  36041  idinside  36045  brsegle  36069  poimirlem28  37615  caures  37727  iscringd  37965  oposlem  39148  cdleme18d  40262  jm2.27  42970  ichexmpl2  47444  ichnreuop  47446  9gbo  47748  11gbo  47749
  Copyright terms: Public domain W3C validator