Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi1d | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
3anbi1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | biidd 261 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
3 | 1, 2 | 3anbi12d 1435 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: vtocl3gaf 3506 vtocl3ga 3507 axdc4uz 13632 wrdl3s3 14605 relexpindlem 14702 sqrtval 14876 sqreu 15000 coprmprod 16294 mreexexd 17274 iscatd2 17307 lmodprop2d 20100 neiptopnei 22191 hausnei 22387 isreg2 22436 regr1lem2 22799 ustval 23262 ustuqtop4 23304 axtgupdim2 26736 axtgeucl 26737 iscgra 27074 brbtwn 27170 ax5seg 27209 axlowdim 27232 axeuclidlem 27233 wlkonprop 27928 upgr2wlk 27938 upgrf1istrl 27973 elwspths2spth 28233 clwlkclwwlk 28267 clwwlknonel 28360 upgr4cycl4dv4e 28450 extwwlkfab 28617 nvi 28877 br8d 30851 xlt2addrd 30983 isslmd 31357 slmdlema 31358 tgoldbachgt 32543 axtgupdim2ALTV 32548 br8 33629 br6 33630 br4 33631 fvtransport 34261 brcolinear2 34287 colineardim1 34290 fscgr 34309 idinside 34313 brsegle 34337 poimirlem28 35732 caures 35845 iscringd 36083 oposlem 37123 cdleme18d 38236 jm2.27 40746 ichexmpl2 44810 ichnreuop 44812 9gbo 45114 11gbo 45115 |
Copyright terms: Public domain | W3C validator |