| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3anbi1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
| 3 | 1, 2 | 3anbi12d 1439 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: vtocl3gafOLD 3533 vtocl3gaOLD 3535 axdc4uz 13891 wrdl3s3 14869 relexpindlem 14970 sqrtval 15144 sqreu 15268 coprmprod 16572 mreexexd 17554 iscatd2 17587 lmodprop2d 20857 neiptopnei 23047 hausnei 23243 isreg2 23292 regr1lem2 23655 ustval 24118 ustuqtop4 24159 axtgupdim2 28449 axtgeucl 28450 iscgra 28787 brbtwn 28877 ax5seg 28916 axlowdim 28939 axeuclidlem 28940 wlkonprop 29635 upgr2wlk 29645 upgrf1istrl 29680 elwspths2spth 29948 clwlkclwwlk 29982 clwwlknonel 30075 upgr4cycl4dv4e 30165 extwwlkfab 30332 nvi 30594 br8d 32591 xlt2addrd 32742 isslmd 33171 slmdlema 33172 constrllcllem 33765 constrcbvlem 33768 tgoldbachgt 34676 axtgupdim2ALTV 34681 trssfir1om 35122 trssfir1omregs 35132 br8 35800 br6 35801 br4 35802 fvtransport 36076 brcolinear2 36102 colineardim1 36105 fscgr 36124 idinside 36128 brsegle 36152 poimirlem28 37698 caures 37810 iscringd 38048 oposlem 39291 cdleme18d 40404 jm2.27 43111 ichexmpl2 47580 ichnreuop 47582 9gbo 47884 11gbo 47885 |
| Copyright terms: Public domain | W3C validator |