| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3anbi1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
| 3 | 1, 2 | 3anbi12d 1439 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: vtocl3gafOLD 3548 vtocl3gaOLD 3550 axdc4uz 13949 wrdl3s3 14928 relexpindlem 15029 sqrtval 15203 sqreu 15327 coprmprod 16631 mreexexd 17609 iscatd2 17642 lmodprop2d 20830 neiptopnei 23019 hausnei 23215 isreg2 23264 regr1lem2 23627 ustval 24090 ustuqtop4 24132 axtgupdim2 28398 axtgeucl 28399 iscgra 28736 brbtwn 28826 ax5seg 28865 axlowdim 28888 axeuclidlem 28889 wlkonprop 29586 upgr2wlk 29596 upgrf1istrl 29631 elwspths2spth 29897 clwlkclwwlk 29931 clwwlknonel 30024 upgr4cycl4dv4e 30114 extwwlkfab 30281 nvi 30543 br8d 32538 xlt2addrd 32682 isslmd 33155 slmdlema 33156 constrllcllem 33742 constrcbvlem 33745 tgoldbachgt 34654 axtgupdim2ALTV 34659 br8 35743 br6 35744 br4 35745 fvtransport 36020 brcolinear2 36046 colineardim1 36049 fscgr 36068 idinside 36072 brsegle 36096 poimirlem28 37642 caures 37754 iscringd 37992 oposlem 39175 cdleme18d 40289 jm2.27 42997 ichexmpl2 47471 ichnreuop 47473 9gbo 47775 11gbo 47776 |
| Copyright terms: Public domain | W3C validator |