| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3anbi1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
| 3 | 1, 2 | 3anbi12d 1439 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: vtocl3gafOLD 3561 vtocl3gaOLD 3563 axdc4uz 14000 wrdl3s3 14979 relexpindlem 15080 sqrtval 15254 sqreu 15377 coprmprod 16678 mreexexd 17658 iscatd2 17691 lmodprop2d 20879 neiptopnei 23068 hausnei 23264 isreg2 23313 regr1lem2 23676 ustval 24139 ustuqtop4 24181 axtgupdim2 28396 axtgeucl 28397 iscgra 28734 brbtwn 28824 ax5seg 28863 axlowdim 28886 axeuclidlem 28887 wlkonprop 29584 upgr2wlk 29594 upgrf1istrl 29629 elwspths2spth 29895 clwlkclwwlk 29929 clwwlknonel 30022 upgr4cycl4dv4e 30112 extwwlkfab 30279 nvi 30541 br8d 32536 xlt2addrd 32682 isslmd 33145 slmdlema 33146 constrllcllem 33732 constrcbvlem 33735 tgoldbachgt 34641 axtgupdim2ALTV 34646 br8 35719 br6 35720 br4 35721 fvtransport 35996 brcolinear2 36022 colineardim1 36025 fscgr 36044 idinside 36048 brsegle 36072 poimirlem28 37618 caures 37730 iscringd 37968 oposlem 39146 cdleme18d 40260 jm2.27 42979 ichexmpl2 47432 ichnreuop 47434 9gbo 47736 11gbo 47737 |
| Copyright terms: Public domain | W3C validator |