| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3anbi1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
| 3 | 1, 2 | 3anbi12d 1439 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: vtocl3gafOLD 3545 vtocl3gaOLD 3547 axdc4uz 13925 wrdl3s3 14904 relexpindlem 15005 sqrtval 15179 sqreu 15303 coprmprod 16607 mreexexd 17589 iscatd2 17622 lmodprop2d 20862 neiptopnei 23052 hausnei 23248 isreg2 23297 regr1lem2 23660 ustval 24123 ustuqtop4 24165 axtgupdim2 28451 axtgeucl 28452 iscgra 28789 brbtwn 28879 ax5seg 28918 axlowdim 28941 axeuclidlem 28942 wlkonprop 29637 upgr2wlk 29647 upgrf1istrl 29682 elwspths2spth 29947 clwlkclwwlk 29981 clwwlknonel 30074 upgr4cycl4dv4e 30164 extwwlkfab 30331 nvi 30593 br8d 32588 xlt2addrd 32732 isslmd 33171 slmdlema 33172 constrllcllem 33735 constrcbvlem 33738 tgoldbachgt 34647 axtgupdim2ALTV 34652 br8 35736 br6 35737 br4 35738 fvtransport 36013 brcolinear2 36039 colineardim1 36042 fscgr 36061 idinside 36065 brsegle 36089 poimirlem28 37635 caures 37747 iscringd 37985 oposlem 39168 cdleme18d 40282 jm2.27 42990 ichexmpl2 47464 ichnreuop 47466 9gbo 47768 11gbo 47769 |
| Copyright terms: Public domain | W3C validator |