Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb8mot Structured version   Visualization version   GIF version

Theorem wl-sb8mot 37582
Description: Substitution of variable in universal quantifier. Closed form of sb8mo 2600. (Contributed by Wolf Lammen, 11-Aug-2019.)
Assertion
Ref Expression
wl-sb8mot (∀𝑥𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑))

Proof of Theorem wl-sb8mot
StepHypRef Expression
1 wl-sb8et 37555 . . 3 (∀𝑥𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑))
2 wl-sb8eut 37580 . . 3 (∀𝑥𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑))
31, 2imbi12d 344 . 2 (∀𝑥𝑦𝜑 → ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑)))
4 moeu 2582 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
5 moeu 2582 . 2 (∃*𝑦[𝑦 / 𝑥]𝜑 ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑))
63, 4, 53bitr4g 314 1 (∀𝑥𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1537  wex 1778  wnf 1782  [wsb 2063  ∃*wmo 2537  ∃!weu 2567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-10 2140  ax-11 2156  ax-12 2176  ax-13 2376
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator