| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpun | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two unions. (Contributed by NM, 12-Aug-2004.) |
| Ref | Expression |
|---|---|
| xpun | ⊢ ((𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpundi 5685 | . 2 ⊢ ((𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)) = (((𝐴 ∪ 𝐵) × 𝐶) ∪ ((𝐴 ∪ 𝐵) × 𝐷)) | |
| 2 | xpundir 5686 | . . 3 ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) | |
| 3 | xpundir 5686 | . . 3 ⊢ ((𝐴 ∪ 𝐵) × 𝐷) = ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷)) | |
| 4 | 2, 3 | uneq12i 4116 | . 2 ⊢ (((𝐴 ∪ 𝐵) × 𝐶) ∪ ((𝐴 ∪ 𝐵) × 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))) |
| 5 | un4 4125 | . 2 ⊢ (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷))) | |
| 6 | 1, 4, 5 | 3eqtri 2758 | 1 ⊢ ((𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3900 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: ex-xp 30411 |
| Copyright terms: Public domain | W3C validator |