![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpun | Structured version Visualization version GIF version |
Description: The Cartesian product of two unions. (Contributed by NM, 12-Aug-2004.) |
Ref | Expression |
---|---|
xpun | ⊢ ((𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpundi 5310 | . 2 ⊢ ((𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)) = (((𝐴 ∪ 𝐵) × 𝐶) ∪ ((𝐴 ∪ 𝐵) × 𝐷)) | |
2 | xpundir 5311 | . . 3 ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) | |
3 | xpundir 5311 | . . 3 ⊢ ((𝐴 ∪ 𝐵) × 𝐷) = ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷)) | |
4 | 2, 3 | uneq12i 3916 | . 2 ⊢ (((𝐴 ∪ 𝐵) × 𝐶) ∪ ((𝐴 ∪ 𝐵) × 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))) |
5 | un4 3924 | . 2 ⊢ (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷))) | |
6 | 1, 4, 5 | 3eqtri 2797 | 1 ⊢ ((𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∪ cun 3721 × cxp 5248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-un 3728 df-opab 4848 df-xp 5256 |
This theorem is referenced by: ex-xp 27635 |
Copyright terms: Public domain | W3C validator |