MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpun Structured version   Visualization version   GIF version

Theorem xpun 5315
Description: The Cartesian product of two unions. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
xpun ((𝐴𝐵) × (𝐶𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))

Proof of Theorem xpun
StepHypRef Expression
1 xpundi 5310 . 2 ((𝐴𝐵) × (𝐶𝐷)) = (((𝐴𝐵) × 𝐶) ∪ ((𝐴𝐵) × 𝐷))
2 xpundir 5311 . . 3 ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶))
3 xpundir 5311 . . 3 ((𝐴𝐵) × 𝐷) = ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))
42, 3uneq12i 3916 . 2 (((𝐴𝐵) × 𝐶) ∪ ((𝐴𝐵) × 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷)))
5 un4 3924 . 2 (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))
61, 4, 53eqtri 2797 1 ((𝐴𝐵) × (𝐶𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  cun 3721   × cxp 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-v 3353  df-un 3728  df-opab 4848  df-xp 5256
This theorem is referenced by:  ex-xp  27635
  Copyright terms: Public domain W3C validator