| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpundir | Structured version Visualization version GIF version | ||
| Description: Distributive law for Cartesian product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| xpundir | ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 5637 | . 2 ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} | |
| 2 | df-xp 5637 | . . . 4 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
| 3 | df-xp 5637 | . . . 4 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
| 4 | 2, 3 | uneq12i 4125 | . . 3 ⊢ ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 5 | elun 4112 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 6 | 5 | anbi1i 624 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶)) |
| 7 | andir 1010 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 8 | 6, 7 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 9 | 8 | opabbii 5169 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} |
| 10 | unopab 5182 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} | |
| 11 | 9, 10 | eqtr4i 2755 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 12 | 4, 11 | eqtr4i 2755 | . 2 ⊢ ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} |
| 13 | 1, 12 | eqtr4i 2755 | 1 ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 {copab 5164 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-opab 5165 df-xp 5637 |
| This theorem is referenced by: xpun 5705 resundi 5953 xpprsng 7094 naddasslem1 8635 xpfiOLD 9246 xp2dju 10106 alephadd 10506 hashxplem 14374 ustund 24085 cnmpopc 24798 poimirlem3 37590 poimirlem4 37591 poimirlem6 37593 poimirlem7 37594 poimirlem16 37603 poimirlem19 37606 fsuppssind 42554 pwssplit4 43051 |
| Copyright terms: Public domain | W3C validator |