| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpundir | Structured version Visualization version GIF version | ||
| Description: Distributive law for Cartesian product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| xpundir | ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 5647 | . 2 ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} | |
| 2 | df-xp 5647 | . . . 4 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
| 3 | df-xp 5647 | . . . 4 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
| 4 | 2, 3 | uneq12i 4132 | . . 3 ⊢ ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 5 | elun 4119 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 6 | 5 | anbi1i 624 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶)) |
| 7 | andir 1010 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 8 | 6, 7 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 9 | 8 | opabbii 5177 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} |
| 10 | unopab 5190 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} | |
| 11 | 9, 10 | eqtr4i 2756 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 12 | 4, 11 | eqtr4i 2756 | . 2 ⊢ ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} |
| 13 | 1, 12 | eqtr4i 2756 | 1 ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 {copab 5172 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: xpun 5715 resundi 5967 xpprsng 7115 naddasslem1 8661 xpfiOLD 9277 xp2dju 10137 alephadd 10537 hashxplem 14405 ustund 24116 cnmpopc 24829 poimirlem3 37624 poimirlem4 37625 poimirlem6 37627 poimirlem7 37628 poimirlem16 37637 poimirlem19 37640 fsuppssind 42588 pwssplit4 43085 |
| Copyright terms: Public domain | W3C validator |