| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpundir | Structured version Visualization version GIF version | ||
| Description: Distributive law for Cartesian product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| xpundir | ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 5657 | . 2 ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} | |
| 2 | df-xp 5657 | . . . 4 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
| 3 | df-xp 5657 | . . . 4 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
| 4 | 2, 3 | uneq12i 4139 | . . 3 ⊢ ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 5 | elun 4126 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 6 | 5 | anbi1i 624 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶)) |
| 7 | andir 1010 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 8 | 6, 7 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 9 | 8 | opabbii 5183 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} |
| 10 | unopab 5197 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} | |
| 11 | 9, 10 | eqtr4i 2760 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 12 | 4, 11 | eqtr4i 2760 | . 2 ⊢ ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} |
| 13 | 1, 12 | eqtr4i 2760 | 1 ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∪ cun 3922 {copab 5178 × cxp 5649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-un 3929 df-opab 5179 df-xp 5657 |
| This theorem is referenced by: xpun 5725 resundi 5977 xpprsng 7126 naddasslem1 8700 xpfiOLD 9325 xp2dju 10183 alephadd 10583 hashxplem 14439 ustund 24145 cnmpopc 24858 poimirlem3 37568 poimirlem4 37569 poimirlem6 37571 poimirlem7 37572 poimirlem16 37581 poimirlem19 37584 fsuppssind 42541 pwssplit4 43038 |
| Copyright terms: Public domain | W3C validator |