| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpundir | Structured version Visualization version GIF version | ||
| Description: Distributive law for Cartesian product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| xpundir | ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 5644 | . 2 ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} | |
| 2 | df-xp 5644 | . . . 4 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
| 3 | df-xp 5644 | . . . 4 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
| 4 | 2, 3 | uneq12i 4129 | . . 3 ⊢ ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 5 | elun 4116 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 6 | 5 | anbi1i 624 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶)) |
| 7 | andir 1010 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 8 | 6, 7 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 9 | 8 | opabbii 5174 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} |
| 10 | unopab 5187 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} | |
| 11 | 9, 10 | eqtr4i 2755 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 12 | 4, 11 | eqtr4i 2755 | . 2 ⊢ ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 ∈ 𝐶)} |
| 13 | 1, 12 | eqtr4i 2755 | 1 ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 {copab 5169 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: xpun 5712 resundi 5964 xpprsng 7112 naddasslem1 8658 xpfiOLD 9270 xp2dju 10130 alephadd 10530 hashxplem 14398 ustund 24109 cnmpopc 24822 poimirlem3 37617 poimirlem4 37618 poimirlem6 37620 poimirlem7 37621 poimirlem16 37630 poimirlem19 37633 fsuppssind 42581 pwssplit4 43078 |
| Copyright terms: Public domain | W3C validator |