MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpundir Structured version   Visualization version   GIF version

Theorem xpundir 5701
Description: Distributive law for Cartesian product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
xpundir ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶))

Proof of Theorem xpundir
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5637 . 2 ((𝐴𝐵) × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶)}
2 df-xp 5637 . . . 4 (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}
3 df-xp 5637 . . . 4 (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}
42, 3uneq12i 4125 . . 3 ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)})
5 elun 4112 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 624 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑦𝐶))
7 andir 1010 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝑦𝐶) ↔ ((𝑥𝐴𝑦𝐶) ∨ (𝑥𝐵𝑦𝐶)))
86, 7bitri 275 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶) ↔ ((𝑥𝐴𝑦𝐶) ∨ (𝑥𝐵𝑦𝐶)))
98opabbii 5169 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐶) ∨ (𝑥𝐵𝑦𝐶))}
10 unopab 5182 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐶) ∨ (𝑥𝐵𝑦𝐶))}
119, 10eqtr4i 2755 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶)} = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)})
124, 11eqtr4i 2755 . 2 ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶)}
131, 12eqtr4i 2755 1 ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1540  wcel 2109  cun 3909  {copab 5164   × cxp 5629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-un 3916  df-opab 5165  df-xp 5637
This theorem is referenced by:  xpun  5705  resundi  5953  xpprsng  7094  naddasslem1  8635  xpfiOLD  9246  xp2dju  10106  alephadd  10506  hashxplem  14374  ustund  24085  cnmpopc  24798  poimirlem3  37590  poimirlem4  37591  poimirlem6  37593  poimirlem7  37594  poimirlem16  37603  poimirlem19  37606  fsuppssind  42554  pwssplit4  43051
  Copyright terms: Public domain W3C validator