MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpundir Structured version   Visualization version   GIF version

Theorem xpundir 5755
Description: Distributive law for Cartesian product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
xpundir ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶))

Proof of Theorem xpundir
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5691 . 2 ((𝐴𝐵) × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶)}
2 df-xp 5691 . . . 4 (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}
3 df-xp 5691 . . . 4 (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}
42, 3uneq12i 4166 . . 3 ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)})
5 elun 4153 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 624 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑦𝐶))
7 andir 1011 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝑦𝐶) ↔ ((𝑥𝐴𝑦𝐶) ∨ (𝑥𝐵𝑦𝐶)))
86, 7bitri 275 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶) ↔ ((𝑥𝐴𝑦𝐶) ∨ (𝑥𝐵𝑦𝐶)))
98opabbii 5210 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐶) ∨ (𝑥𝐵𝑦𝐶))}
10 unopab 5224 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐶) ∨ (𝑥𝐵𝑦𝐶))}
119, 10eqtr4i 2768 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶)} = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)})
124, 11eqtr4i 2768 . 2 ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶)}
131, 12eqtr4i 2768 1 ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 848   = wceq 1540  wcel 2108  cun 3949  {copab 5205   × cxp 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-un 3956  df-opab 5206  df-xp 5691
This theorem is referenced by:  xpun  5759  resundi  6011  xpprsng  7160  naddasslem1  8732  xpfiOLD  9359  xp2dju  10217  alephadd  10617  hashxplem  14472  ustund  24230  cnmpopc  24955  poimirlem3  37630  poimirlem4  37631  poimirlem6  37633  poimirlem7  37634  poimirlem16  37643  poimirlem19  37646  fsuppssind  42603  pwssplit4  43101
  Copyright terms: Public domain W3C validator