MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-xp Structured version   Visualization version   GIF version

Theorem ex-xp 30245
Description: Example for df-xp 5684. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-xp ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})

Proof of Theorem ex-xp
StepHypRef Expression
1 df-pr 4632 . . 3 {1, 5} = ({1} ∪ {5})
2 df-pr 4632 . . 3 {2, 7} = ({2} ∪ {7})
31, 2xpeq12i 5706 . 2 ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7}))
4 xpun 5751 . 2 (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7})))
5 1ex 11240 . . . . . 6 1 ∈ V
6 2nn 12315 . . . . . . 7 2 ∈ ℕ
76elexi 3491 . . . . . 6 2 ∈ V
85, 7xpsn 7150 . . . . 5 ({1} × {2}) = {⟨1, 2⟩}
9 7nn 12334 . . . . . . 7 7 ∈ ℕ
109elexi 3491 . . . . . 6 7 ∈ V
115, 10xpsn 7150 . . . . 5 ({1} × {7}) = {⟨1, 7⟩}
128, 11uneq12i 4160 . . . 4 (({1} × {2}) ∪ ({1} × {7})) = ({⟨1, 2⟩} ∪ {⟨1, 7⟩})
13 df-pr 4632 . . . 4 {⟨1, 2⟩, ⟨1, 7⟩} = ({⟨1, 2⟩} ∪ {⟨1, 7⟩})
1412, 13eqtr4i 2759 . . 3 (({1} × {2}) ∪ ({1} × {7})) = {⟨1, 2⟩, ⟨1, 7⟩}
15 5nn 12328 . . . . . . 7 5 ∈ ℕ
1615elexi 3491 . . . . . 6 5 ∈ V
1716, 7xpsn 7150 . . . . 5 ({5} × {2}) = {⟨5, 2⟩}
1816, 10xpsn 7150 . . . . 5 ({5} × {7}) = {⟨5, 7⟩}
1917, 18uneq12i 4160 . . . 4 (({5} × {2}) ∪ ({5} × {7})) = ({⟨5, 2⟩} ∪ {⟨5, 7⟩})
20 df-pr 4632 . . . 4 {⟨5, 2⟩, ⟨5, 7⟩} = ({⟨5, 2⟩} ∪ {⟨5, 7⟩})
2119, 20eqtr4i 2759 . . 3 (({5} × {2}) ∪ ({5} × {7})) = {⟨5, 2⟩, ⟨5, 7⟩}
2214, 21uneq12i 4160 . 2 ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})
233, 4, 223eqtri 2760 1 ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cun 3945  {csn 4629  {cpr 4631  cop 4635   × cxp 5676  1c1 11139  cn 12242  2c2 12297  5c5 12300  7c7 12302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740  ax-1cn 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator