| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-xp | Structured version Visualization version GIF version | ||
| Description: Example for df-xp 5622. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| ex-xp | ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4579 | . . 3 ⊢ {1, 5} = ({1} ∪ {5}) | |
| 2 | df-pr 4579 | . . 3 ⊢ {2, 7} = ({2} ∪ {7}) | |
| 3 | 1, 2 | xpeq12i 5644 | . 2 ⊢ ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7})) |
| 4 | xpun 5690 | . 2 ⊢ (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) | |
| 5 | 1ex 11105 | . . . . . 6 ⊢ 1 ∈ V | |
| 6 | 2nn 12195 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 7 | 6 | elexi 3459 | . . . . . 6 ⊢ 2 ∈ V |
| 8 | 5, 7 | xpsn 7074 | . . . . 5 ⊢ ({1} × {2}) = {〈1, 2〉} |
| 9 | 7nn 12214 | . . . . . . 7 ⊢ 7 ∈ ℕ | |
| 10 | 9 | elexi 3459 | . . . . . 6 ⊢ 7 ∈ V |
| 11 | 5, 10 | xpsn 7074 | . . . . 5 ⊢ ({1} × {7}) = {〈1, 7〉} |
| 12 | 8, 11 | uneq12i 4116 | . . . 4 ⊢ (({1} × {2}) ∪ ({1} × {7})) = ({〈1, 2〉} ∪ {〈1, 7〉}) |
| 13 | df-pr 4579 | . . . 4 ⊢ {〈1, 2〉, 〈1, 7〉} = ({〈1, 2〉} ∪ {〈1, 7〉}) | |
| 14 | 12, 13 | eqtr4i 2757 | . . 3 ⊢ (({1} × {2}) ∪ ({1} × {7})) = {〈1, 2〉, 〈1, 7〉} |
| 15 | 5nn 12208 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
| 16 | 15 | elexi 3459 | . . . . . 6 ⊢ 5 ∈ V |
| 17 | 16, 7 | xpsn 7074 | . . . . 5 ⊢ ({5} × {2}) = {〈5, 2〉} |
| 18 | 16, 10 | xpsn 7074 | . . . . 5 ⊢ ({5} × {7}) = {〈5, 7〉} |
| 19 | 17, 18 | uneq12i 4116 | . . . 4 ⊢ (({5} × {2}) ∪ ({5} × {7})) = ({〈5, 2〉} ∪ {〈5, 7〉}) |
| 20 | df-pr 4579 | . . . 4 ⊢ {〈5, 2〉, 〈5, 7〉} = ({〈5, 2〉} ∪ {〈5, 7〉}) | |
| 21 | 19, 20 | eqtr4i 2757 | . . 3 ⊢ (({5} × {2}) ∪ ({5} × {7})) = {〈5, 2〉, 〈5, 7〉} |
| 22 | 14, 21 | uneq12i 4116 | . 2 ⊢ ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
| 23 | 3, 4, 22 | 3eqtri 2758 | 1 ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3900 {csn 4576 {cpr 4578 〈cop 4582 × cxp 5614 1c1 11004 ℕcn 12122 2c2 12177 5c5 12180 7c7 12182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-1cn 11061 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |