MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-xp Structured version   Visualization version   GIF version

Theorem ex-xp 30365
Description: Example for df-xp 5644. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-xp ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})

Proof of Theorem ex-xp
StepHypRef Expression
1 df-pr 4592 . . 3 {1, 5} = ({1} ∪ {5})
2 df-pr 4592 . . 3 {2, 7} = ({2} ∪ {7})
31, 2xpeq12i 5666 . 2 ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7}))
4 xpun 5712 . 2 (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7})))
5 1ex 11170 . . . . . 6 1 ∈ V
6 2nn 12259 . . . . . . 7 2 ∈ ℕ
76elexi 3470 . . . . . 6 2 ∈ V
85, 7xpsn 7113 . . . . 5 ({1} × {2}) = {⟨1, 2⟩}
9 7nn 12278 . . . . . . 7 7 ∈ ℕ
109elexi 3470 . . . . . 6 7 ∈ V
115, 10xpsn 7113 . . . . 5 ({1} × {7}) = {⟨1, 7⟩}
128, 11uneq12i 4129 . . . 4 (({1} × {2}) ∪ ({1} × {7})) = ({⟨1, 2⟩} ∪ {⟨1, 7⟩})
13 df-pr 4592 . . . 4 {⟨1, 2⟩, ⟨1, 7⟩} = ({⟨1, 2⟩} ∪ {⟨1, 7⟩})
1412, 13eqtr4i 2755 . . 3 (({1} × {2}) ∪ ({1} × {7})) = {⟨1, 2⟩, ⟨1, 7⟩}
15 5nn 12272 . . . . . . 7 5 ∈ ℕ
1615elexi 3470 . . . . . 6 5 ∈ V
1716, 7xpsn 7113 . . . . 5 ({5} × {2}) = {⟨5, 2⟩}
1816, 10xpsn 7113 . . . . 5 ({5} × {7}) = {⟨5, 7⟩}
1917, 18uneq12i 4129 . . . 4 (({5} × {2}) ∪ ({5} × {7})) = ({⟨5, 2⟩} ∪ {⟨5, 7⟩})
20 df-pr 4592 . . . 4 {⟨5, 2⟩, ⟨5, 7⟩} = ({⟨5, 2⟩} ∪ {⟨5, 7⟩})
2119, 20eqtr4i 2755 . . 3 (({5} × {2}) ∪ ({5} × {7})) = {⟨5, 2⟩, ⟨5, 7⟩}
2214, 21uneq12i 4129 . 2 ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})
233, 4, 223eqtri 2756 1 ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3912  {csn 4589  {cpr 4591  cop 4595   × cxp 5636  1c1 11069  cn 12186  2c2 12241  5c5 12244  7c7 12246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-1cn 11126
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator