| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-xp | Structured version Visualization version GIF version | ||
| Description: Example for df-xp 5625. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| ex-xp | ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4578 | . . 3 ⊢ {1, 5} = ({1} ∪ {5}) | |
| 2 | df-pr 4578 | . . 3 ⊢ {2, 7} = ({2} ∪ {7}) | |
| 3 | 1, 2 | xpeq12i 5647 | . 2 ⊢ ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7})) |
| 4 | xpun 5693 | . 2 ⊢ (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) | |
| 5 | 1ex 11115 | . . . . . 6 ⊢ 1 ∈ V | |
| 6 | 2nn 12205 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 7 | 6 | elexi 3460 | . . . . . 6 ⊢ 2 ∈ V |
| 8 | 5, 7 | xpsn 7080 | . . . . 5 ⊢ ({1} × {2}) = {〈1, 2〉} |
| 9 | 7nn 12224 | . . . . . . 7 ⊢ 7 ∈ ℕ | |
| 10 | 9 | elexi 3460 | . . . . . 6 ⊢ 7 ∈ V |
| 11 | 5, 10 | xpsn 7080 | . . . . 5 ⊢ ({1} × {7}) = {〈1, 7〉} |
| 12 | 8, 11 | uneq12i 4115 | . . . 4 ⊢ (({1} × {2}) ∪ ({1} × {7})) = ({〈1, 2〉} ∪ {〈1, 7〉}) |
| 13 | df-pr 4578 | . . . 4 ⊢ {〈1, 2〉, 〈1, 7〉} = ({〈1, 2〉} ∪ {〈1, 7〉}) | |
| 14 | 12, 13 | eqtr4i 2759 | . . 3 ⊢ (({1} × {2}) ∪ ({1} × {7})) = {〈1, 2〉, 〈1, 7〉} |
| 15 | 5nn 12218 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
| 16 | 15 | elexi 3460 | . . . . . 6 ⊢ 5 ∈ V |
| 17 | 16, 7 | xpsn 7080 | . . . . 5 ⊢ ({5} × {2}) = {〈5, 2〉} |
| 18 | 16, 10 | xpsn 7080 | . . . . 5 ⊢ ({5} × {7}) = {〈5, 7〉} |
| 19 | 17, 18 | uneq12i 4115 | . . . 4 ⊢ (({5} × {2}) ∪ ({5} × {7})) = ({〈5, 2〉} ∪ {〈5, 7〉}) |
| 20 | df-pr 4578 | . . . 4 ⊢ {〈5, 2〉, 〈5, 7〉} = ({〈5, 2〉} ∪ {〈5, 7〉}) | |
| 21 | 19, 20 | eqtr4i 2759 | . . 3 ⊢ (({5} × {2}) ∪ ({5} × {7})) = {〈5, 2〉, 〈5, 7〉} |
| 22 | 14, 21 | uneq12i 4115 | . 2 ⊢ ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
| 23 | 3, 4, 22 | 3eqtri 2760 | 1 ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3896 {csn 4575 {cpr 4577 〈cop 4581 × cxp 5617 1c1 11014 ℕcn 12132 2c2 12187 5c5 12190 7c7 12192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-1cn 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |