MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-xp Structured version   Visualization version   GIF version

Theorem ex-xp 28796
Description: Example for df-xp 5596. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-xp ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})

Proof of Theorem ex-xp
StepHypRef Expression
1 df-pr 4570 . . 3 {1, 5} = ({1} ∪ {5})
2 df-pr 4570 . . 3 {2, 7} = ({2} ∪ {7})
31, 2xpeq12i 5618 . 2 ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7}))
4 xpun 5661 . 2 (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7})))
5 1ex 10972 . . . . . 6 1 ∈ V
6 2nn 12046 . . . . . . 7 2 ∈ ℕ
76elexi 3450 . . . . . 6 2 ∈ V
85, 7xpsn 7010 . . . . 5 ({1} × {2}) = {⟨1, 2⟩}
9 7nn 12065 . . . . . . 7 7 ∈ ℕ
109elexi 3450 . . . . . 6 7 ∈ V
115, 10xpsn 7010 . . . . 5 ({1} × {7}) = {⟨1, 7⟩}
128, 11uneq12i 4100 . . . 4 (({1} × {2}) ∪ ({1} × {7})) = ({⟨1, 2⟩} ∪ {⟨1, 7⟩})
13 df-pr 4570 . . . 4 {⟨1, 2⟩, ⟨1, 7⟩} = ({⟨1, 2⟩} ∪ {⟨1, 7⟩})
1412, 13eqtr4i 2771 . . 3 (({1} × {2}) ∪ ({1} × {7})) = {⟨1, 2⟩, ⟨1, 7⟩}
15 5nn 12059 . . . . . . 7 5 ∈ ℕ
1615elexi 3450 . . . . . 6 5 ∈ V
1716, 7xpsn 7010 . . . . 5 ({5} × {2}) = {⟨5, 2⟩}
1816, 10xpsn 7010 . . . . 5 ({5} × {7}) = {⟨5, 7⟩}
1917, 18uneq12i 4100 . . . 4 (({5} × {2}) ∪ ({5} × {7})) = ({⟨5, 2⟩} ∪ {⟨5, 7⟩})
20 df-pr 4570 . . . 4 {⟨5, 2⟩, ⟨5, 7⟩} = ({⟨5, 2⟩} ∪ {⟨5, 7⟩})
2119, 20eqtr4i 2771 . . 3 (({5} × {2}) ∪ ({5} × {7})) = {⟨5, 2⟩, ⟨5, 7⟩}
2214, 21uneq12i 4100 . 2 ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})
233, 4, 223eqtri 2772 1 ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cun 3890  {csn 4567  {cpr 4569  cop 4573   × cxp 5588  1c1 10873  cn 11973  2c2 12028  5c5 12031  7c7 12033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582  ax-1cn 10930
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator