| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-xp | Structured version Visualization version GIF version | ||
| Description: Example for df-xp 5647. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| ex-xp | ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4595 | . . 3 ⊢ {1, 5} = ({1} ∪ {5}) | |
| 2 | df-pr 4595 | . . 3 ⊢ {2, 7} = ({2} ∪ {7}) | |
| 3 | 1, 2 | xpeq12i 5669 | . 2 ⊢ ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7})) |
| 4 | xpun 5715 | . 2 ⊢ (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) | |
| 5 | 1ex 11177 | . . . . . 6 ⊢ 1 ∈ V | |
| 6 | 2nn 12266 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 7 | 6 | elexi 3473 | . . . . . 6 ⊢ 2 ∈ V |
| 8 | 5, 7 | xpsn 7116 | . . . . 5 ⊢ ({1} × {2}) = {〈1, 2〉} |
| 9 | 7nn 12285 | . . . . . . 7 ⊢ 7 ∈ ℕ | |
| 10 | 9 | elexi 3473 | . . . . . 6 ⊢ 7 ∈ V |
| 11 | 5, 10 | xpsn 7116 | . . . . 5 ⊢ ({1} × {7}) = {〈1, 7〉} |
| 12 | 8, 11 | uneq12i 4132 | . . . 4 ⊢ (({1} × {2}) ∪ ({1} × {7})) = ({〈1, 2〉} ∪ {〈1, 7〉}) |
| 13 | df-pr 4595 | . . . 4 ⊢ {〈1, 2〉, 〈1, 7〉} = ({〈1, 2〉} ∪ {〈1, 7〉}) | |
| 14 | 12, 13 | eqtr4i 2756 | . . 3 ⊢ (({1} × {2}) ∪ ({1} × {7})) = {〈1, 2〉, 〈1, 7〉} |
| 15 | 5nn 12279 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
| 16 | 15 | elexi 3473 | . . . . . 6 ⊢ 5 ∈ V |
| 17 | 16, 7 | xpsn 7116 | . . . . 5 ⊢ ({5} × {2}) = {〈5, 2〉} |
| 18 | 16, 10 | xpsn 7116 | . . . . 5 ⊢ ({5} × {7}) = {〈5, 7〉} |
| 19 | 17, 18 | uneq12i 4132 | . . . 4 ⊢ (({5} × {2}) ∪ ({5} × {7})) = ({〈5, 2〉} ∪ {〈5, 7〉}) |
| 20 | df-pr 4595 | . . . 4 ⊢ {〈5, 2〉, 〈5, 7〉} = ({〈5, 2〉} ∪ {〈5, 7〉}) | |
| 21 | 19, 20 | eqtr4i 2756 | . . 3 ⊢ (({5} × {2}) ∪ ({5} × {7})) = {〈5, 2〉, 〈5, 7〉} |
| 22 | 14, 21 | uneq12i 4132 | . 2 ⊢ ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
| 23 | 3, 4, 22 | 3eqtri 2757 | 1 ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3915 {csn 4592 {cpr 4594 〈cop 4598 × cxp 5639 1c1 11076 ℕcn 12193 2c2 12248 5c5 12251 7c7 12253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |