| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-xp | Structured version Visualization version GIF version | ||
| Description: Example for df-xp 5644. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| ex-xp | ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4592 | . . 3 ⊢ {1, 5} = ({1} ∪ {5}) | |
| 2 | df-pr 4592 | . . 3 ⊢ {2, 7} = ({2} ∪ {7}) | |
| 3 | 1, 2 | xpeq12i 5666 | . 2 ⊢ ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7})) |
| 4 | xpun 5712 | . 2 ⊢ (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) | |
| 5 | 1ex 11170 | . . . . . 6 ⊢ 1 ∈ V | |
| 6 | 2nn 12259 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 7 | 6 | elexi 3470 | . . . . . 6 ⊢ 2 ∈ V |
| 8 | 5, 7 | xpsn 7113 | . . . . 5 ⊢ ({1} × {2}) = {〈1, 2〉} |
| 9 | 7nn 12278 | . . . . . . 7 ⊢ 7 ∈ ℕ | |
| 10 | 9 | elexi 3470 | . . . . . 6 ⊢ 7 ∈ V |
| 11 | 5, 10 | xpsn 7113 | . . . . 5 ⊢ ({1} × {7}) = {〈1, 7〉} |
| 12 | 8, 11 | uneq12i 4129 | . . . 4 ⊢ (({1} × {2}) ∪ ({1} × {7})) = ({〈1, 2〉} ∪ {〈1, 7〉}) |
| 13 | df-pr 4592 | . . . 4 ⊢ {〈1, 2〉, 〈1, 7〉} = ({〈1, 2〉} ∪ {〈1, 7〉}) | |
| 14 | 12, 13 | eqtr4i 2755 | . . 3 ⊢ (({1} × {2}) ∪ ({1} × {7})) = {〈1, 2〉, 〈1, 7〉} |
| 15 | 5nn 12272 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
| 16 | 15 | elexi 3470 | . . . . . 6 ⊢ 5 ∈ V |
| 17 | 16, 7 | xpsn 7113 | . . . . 5 ⊢ ({5} × {2}) = {〈5, 2〉} |
| 18 | 16, 10 | xpsn 7113 | . . . . 5 ⊢ ({5} × {7}) = {〈5, 7〉} |
| 19 | 17, 18 | uneq12i 4129 | . . . 4 ⊢ (({5} × {2}) ∪ ({5} × {7})) = ({〈5, 2〉} ∪ {〈5, 7〉}) |
| 20 | df-pr 4592 | . . . 4 ⊢ {〈5, 2〉, 〈5, 7〉} = ({〈5, 2〉} ∪ {〈5, 7〉}) | |
| 21 | 19, 20 | eqtr4i 2755 | . . 3 ⊢ (({5} × {2}) ∪ ({5} × {7})) = {〈5, 2〉, 〈5, 7〉} |
| 22 | 14, 21 | uneq12i 4129 | . 2 ⊢ ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
| 23 | 3, 4, 22 | 3eqtri 2756 | 1 ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3912 {csn 4589 {cpr 4591 〈cop 4595 × cxp 5636 1c1 11069 ℕcn 12186 2c2 12241 5c5 12244 7c7 12246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |