Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-xp | Structured version Visualization version GIF version |
Description: Example for df-xp 5596. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-xp | ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4570 | . . 3 ⊢ {1, 5} = ({1} ∪ {5}) | |
2 | df-pr 4570 | . . 3 ⊢ {2, 7} = ({2} ∪ {7}) | |
3 | 1, 2 | xpeq12i 5618 | . 2 ⊢ ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7})) |
4 | xpun 5661 | . 2 ⊢ (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) | |
5 | 1ex 10972 | . . . . . 6 ⊢ 1 ∈ V | |
6 | 2nn 12046 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
7 | 6 | elexi 3450 | . . . . . 6 ⊢ 2 ∈ V |
8 | 5, 7 | xpsn 7010 | . . . . 5 ⊢ ({1} × {2}) = {〈1, 2〉} |
9 | 7nn 12065 | . . . . . . 7 ⊢ 7 ∈ ℕ | |
10 | 9 | elexi 3450 | . . . . . 6 ⊢ 7 ∈ V |
11 | 5, 10 | xpsn 7010 | . . . . 5 ⊢ ({1} × {7}) = {〈1, 7〉} |
12 | 8, 11 | uneq12i 4100 | . . . 4 ⊢ (({1} × {2}) ∪ ({1} × {7})) = ({〈1, 2〉} ∪ {〈1, 7〉}) |
13 | df-pr 4570 | . . . 4 ⊢ {〈1, 2〉, 〈1, 7〉} = ({〈1, 2〉} ∪ {〈1, 7〉}) | |
14 | 12, 13 | eqtr4i 2771 | . . 3 ⊢ (({1} × {2}) ∪ ({1} × {7})) = {〈1, 2〉, 〈1, 7〉} |
15 | 5nn 12059 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
16 | 15 | elexi 3450 | . . . . . 6 ⊢ 5 ∈ V |
17 | 16, 7 | xpsn 7010 | . . . . 5 ⊢ ({5} × {2}) = {〈5, 2〉} |
18 | 16, 10 | xpsn 7010 | . . . . 5 ⊢ ({5} × {7}) = {〈5, 7〉} |
19 | 17, 18 | uneq12i 4100 | . . . 4 ⊢ (({5} × {2}) ∪ ({5} × {7})) = ({〈5, 2〉} ∪ {〈5, 7〉}) |
20 | df-pr 4570 | . . . 4 ⊢ {〈5, 2〉, 〈5, 7〉} = ({〈5, 2〉} ∪ {〈5, 7〉}) | |
21 | 19, 20 | eqtr4i 2771 | . . 3 ⊢ (({5} × {2}) ∪ ({5} × {7})) = {〈5, 2〉, 〈5, 7〉} |
22 | 14, 21 | uneq12i 4100 | . 2 ⊢ ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
23 | 3, 4, 22 | 3eqtri 2772 | 1 ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∪ cun 3890 {csn 4567 {cpr 4569 〈cop 4573 × cxp 5588 1c1 10873 ℕcn 11973 2c2 12028 5c5 12031 7c7 12033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 ax-1cn 10930 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |