MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-xp Structured version   Visualization version   GIF version

Theorem ex-xp 27851
Description: Example for df-xp 5348. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-xp ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})

Proof of Theorem ex-xp
StepHypRef Expression
1 df-pr 4400 . . 3 {1, 5} = ({1} ∪ {5})
2 df-pr 4400 . . 3 {2, 7} = ({2} ∪ {7})
31, 2xpeq12i 5370 . 2 ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7}))
4 xpun 5409 . 2 (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7})))
5 1ex 10352 . . . . . 6 1 ∈ V
6 2nn 11424 . . . . . . 7 2 ∈ ℕ
76elexi 3430 . . . . . 6 2 ∈ V
85, 7xpsn 6657 . . . . 5 ({1} × {2}) = {⟨1, 2⟩}
9 7nn 11447 . . . . . . 7 7 ∈ ℕ
109elexi 3430 . . . . . 6 7 ∈ V
115, 10xpsn 6657 . . . . 5 ({1} × {7}) = {⟨1, 7⟩}
128, 11uneq12i 3992 . . . 4 (({1} × {2}) ∪ ({1} × {7})) = ({⟨1, 2⟩} ∪ {⟨1, 7⟩})
13 df-pr 4400 . . . 4 {⟨1, 2⟩, ⟨1, 7⟩} = ({⟨1, 2⟩} ∪ {⟨1, 7⟩})
1412, 13eqtr4i 2852 . . 3 (({1} × {2}) ∪ ({1} × {7})) = {⟨1, 2⟩, ⟨1, 7⟩}
15 5nn 11439 . . . . . . 7 5 ∈ ℕ
1615elexi 3430 . . . . . 6 5 ∈ V
1716, 7xpsn 6657 . . . . 5 ({5} × {2}) = {⟨5, 2⟩}
1816, 10xpsn 6657 . . . . 5 ({5} × {7}) = {⟨5, 7⟩}
1917, 18uneq12i 3992 . . . 4 (({5} × {2}) ∪ ({5} × {7})) = ({⟨5, 2⟩} ∪ {⟨5, 7⟩})
20 df-pr 4400 . . . 4 {⟨5, 2⟩, ⟨5, 7⟩} = ({⟨5, 2⟩} ∪ {⟨5, 7⟩})
2119, 20eqtr4i 2852 . . 3 (({5} × {2}) ∪ ({5} × {7})) = {⟨5, 2⟩, ⟨5, 7⟩}
2214, 21uneq12i 3992 . 2 ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})
233, 4, 223eqtri 2853 1 ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  cun 3796  {csn 4397  {cpr 4399  cop 4403   × cxp 5340  1c1 10253  cn 11350  2c2 11406  5c5 11409  7c7 11411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-1cn 10310
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator