![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-xp | Structured version Visualization version GIF version |
Description: Example for df-xp 5681. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-xp | ⊢ ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4630 | . . 3 ⊢ {1, 5} = ({1} ∪ {5}) | |
2 | df-pr 4630 | . . 3 ⊢ {2, 7} = ({2} ∪ {7}) | |
3 | 1, 2 | xpeq12i 5703 | . 2 ⊢ ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7})) |
4 | xpun 5747 | . 2 ⊢ (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) | |
5 | 1ex 11206 | . . . . . 6 ⊢ 1 ∈ V | |
6 | 2nn 12281 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
7 | 6 | elexi 3493 | . . . . . 6 ⊢ 2 ∈ V |
8 | 5, 7 | xpsn 7135 | . . . . 5 ⊢ ({1} × {2}) = {⟨1, 2⟩} |
9 | 7nn 12300 | . . . . . . 7 ⊢ 7 ∈ ℕ | |
10 | 9 | elexi 3493 | . . . . . 6 ⊢ 7 ∈ V |
11 | 5, 10 | xpsn 7135 | . . . . 5 ⊢ ({1} × {7}) = {⟨1, 7⟩} |
12 | 8, 11 | uneq12i 4160 | . . . 4 ⊢ (({1} × {2}) ∪ ({1} × {7})) = ({⟨1, 2⟩} ∪ {⟨1, 7⟩}) |
13 | df-pr 4630 | . . . 4 ⊢ {⟨1, 2⟩, ⟨1, 7⟩} = ({⟨1, 2⟩} ∪ {⟨1, 7⟩}) | |
14 | 12, 13 | eqtr4i 2763 | . . 3 ⊢ (({1} × {2}) ∪ ({1} × {7})) = {⟨1, 2⟩, ⟨1, 7⟩} |
15 | 5nn 12294 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
16 | 15 | elexi 3493 | . . . . . 6 ⊢ 5 ∈ V |
17 | 16, 7 | xpsn 7135 | . . . . 5 ⊢ ({5} × {2}) = {⟨5, 2⟩} |
18 | 16, 10 | xpsn 7135 | . . . . 5 ⊢ ({5} × {7}) = {⟨5, 7⟩} |
19 | 17, 18 | uneq12i 4160 | . . . 4 ⊢ (({5} × {2}) ∪ ({5} × {7})) = ({⟨5, 2⟩} ∪ {⟨5, 7⟩}) |
20 | df-pr 4630 | . . . 4 ⊢ {⟨5, 2⟩, ⟨5, 7⟩} = ({⟨5, 2⟩} ∪ {⟨5, 7⟩}) | |
21 | 19, 20 | eqtr4i 2763 | . . 3 ⊢ (({5} × {2}) ∪ ({5} × {7})) = {⟨5, 2⟩, ⟨5, 7⟩} |
22 | 14, 21 | uneq12i 4160 | . 2 ⊢ ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}) |
23 | 3, 4, 22 | 3eqtri 2764 | 1 ⊢ ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∪ cun 3945 {csn 4627 {cpr 4629 ⟨cop 4633 × cxp 5673 1c1 11107 ℕcn 12208 2c2 12263 5c5 12266 7c7 12268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 ax-1cn 11164 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |