MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-xp Structured version   Visualization version   GIF version

Theorem ex-xp 30418
Description: Example for df-xp 5625. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-xp ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})

Proof of Theorem ex-xp
StepHypRef Expression
1 df-pr 4578 . . 3 {1, 5} = ({1} ∪ {5})
2 df-pr 4578 . . 3 {2, 7} = ({2} ∪ {7})
31, 2xpeq12i 5647 . 2 ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7}))
4 xpun 5693 . 2 (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7})))
5 1ex 11115 . . . . . 6 1 ∈ V
6 2nn 12205 . . . . . . 7 2 ∈ ℕ
76elexi 3460 . . . . . 6 2 ∈ V
85, 7xpsn 7080 . . . . 5 ({1} × {2}) = {⟨1, 2⟩}
9 7nn 12224 . . . . . . 7 7 ∈ ℕ
109elexi 3460 . . . . . 6 7 ∈ V
115, 10xpsn 7080 . . . . 5 ({1} × {7}) = {⟨1, 7⟩}
128, 11uneq12i 4115 . . . 4 (({1} × {2}) ∪ ({1} × {7})) = ({⟨1, 2⟩} ∪ {⟨1, 7⟩})
13 df-pr 4578 . . . 4 {⟨1, 2⟩, ⟨1, 7⟩} = ({⟨1, 2⟩} ∪ {⟨1, 7⟩})
1412, 13eqtr4i 2759 . . 3 (({1} × {2}) ∪ ({1} × {7})) = {⟨1, 2⟩, ⟨1, 7⟩}
15 5nn 12218 . . . . . . 7 5 ∈ ℕ
1615elexi 3460 . . . . . 6 5 ∈ V
1716, 7xpsn 7080 . . . . 5 ({5} × {2}) = {⟨5, 2⟩}
1816, 10xpsn 7080 . . . . 5 ({5} × {7}) = {⟨5, 7⟩}
1917, 18uneq12i 4115 . . . 4 (({5} × {2}) ∪ ({5} × {7})) = ({⟨5, 2⟩} ∪ {⟨5, 7⟩})
20 df-pr 4578 . . . 4 {⟨5, 2⟩, ⟨5, 7⟩} = ({⟨5, 2⟩} ∪ {⟨5, 7⟩})
2119, 20eqtr4i 2759 . . 3 (({5} × {2}) ∪ ({5} × {7})) = {⟨5, 2⟩, ⟨5, 7⟩}
2214, 21uneq12i 4115 . 2 ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})
233, 4, 223eqtri 2760 1 ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3896  {csn 4575  {cpr 4577  cop 4581   × cxp 5617  1c1 11014  cn 12132  2c2 12187  5c5 12190  7c7 12192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674  ax-1cn 11071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator