![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-xp | Structured version Visualization version GIF version |
Description: Example for df-xp 5348. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-xp | ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4400 | . . 3 ⊢ {1, 5} = ({1} ∪ {5}) | |
2 | df-pr 4400 | . . 3 ⊢ {2, 7} = ({2} ∪ {7}) | |
3 | 1, 2 | xpeq12i 5370 | . 2 ⊢ ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7})) |
4 | xpun 5409 | . 2 ⊢ (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) | |
5 | 1ex 10352 | . . . . . 6 ⊢ 1 ∈ V | |
6 | 2nn 11424 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
7 | 6 | elexi 3430 | . . . . . 6 ⊢ 2 ∈ V |
8 | 5, 7 | xpsn 6657 | . . . . 5 ⊢ ({1} × {2}) = {〈1, 2〉} |
9 | 7nn 11447 | . . . . . . 7 ⊢ 7 ∈ ℕ | |
10 | 9 | elexi 3430 | . . . . . 6 ⊢ 7 ∈ V |
11 | 5, 10 | xpsn 6657 | . . . . 5 ⊢ ({1} × {7}) = {〈1, 7〉} |
12 | 8, 11 | uneq12i 3992 | . . . 4 ⊢ (({1} × {2}) ∪ ({1} × {7})) = ({〈1, 2〉} ∪ {〈1, 7〉}) |
13 | df-pr 4400 | . . . 4 ⊢ {〈1, 2〉, 〈1, 7〉} = ({〈1, 2〉} ∪ {〈1, 7〉}) | |
14 | 12, 13 | eqtr4i 2852 | . . 3 ⊢ (({1} × {2}) ∪ ({1} × {7})) = {〈1, 2〉, 〈1, 7〉} |
15 | 5nn 11439 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
16 | 15 | elexi 3430 | . . . . . 6 ⊢ 5 ∈ V |
17 | 16, 7 | xpsn 6657 | . . . . 5 ⊢ ({5} × {2}) = {〈5, 2〉} |
18 | 16, 10 | xpsn 6657 | . . . . 5 ⊢ ({5} × {7}) = {〈5, 7〉} |
19 | 17, 18 | uneq12i 3992 | . . . 4 ⊢ (({5} × {2}) ∪ ({5} × {7})) = ({〈5, 2〉} ∪ {〈5, 7〉}) |
20 | df-pr 4400 | . . . 4 ⊢ {〈5, 2〉, 〈5, 7〉} = ({〈5, 2〉} ∪ {〈5, 7〉}) | |
21 | 19, 20 | eqtr4i 2852 | . . 3 ⊢ (({5} × {2}) ∪ ({5} × {7})) = {〈5, 2〉, 〈5, 7〉} |
22 | 14, 21 | uneq12i 3992 | . 2 ⊢ ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
23 | 3, 4, 22 | 3eqtri 2853 | 1 ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ∪ cun 3796 {csn 4397 {cpr 4399 〈cop 4403 × cxp 5340 1c1 10253 ℕcn 11350 2c2 11406 5c5 11409 7c7 11411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-1cn 10310 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-om 7327 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-5 11417 df-6 11418 df-7 11419 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |