![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-xp | Structured version Visualization version GIF version |
Description: Example for df-xp 5695. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-xp | ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4634 | . . 3 ⊢ {1, 5} = ({1} ∪ {5}) | |
2 | df-pr 4634 | . . 3 ⊢ {2, 7} = ({2} ∪ {7}) | |
3 | 1, 2 | xpeq12i 5717 | . 2 ⊢ ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7})) |
4 | xpun 5762 | . 2 ⊢ (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) | |
5 | 1ex 11255 | . . . . . 6 ⊢ 1 ∈ V | |
6 | 2nn 12337 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
7 | 6 | elexi 3501 | . . . . . 6 ⊢ 2 ∈ V |
8 | 5, 7 | xpsn 7161 | . . . . 5 ⊢ ({1} × {2}) = {〈1, 2〉} |
9 | 7nn 12356 | . . . . . . 7 ⊢ 7 ∈ ℕ | |
10 | 9 | elexi 3501 | . . . . . 6 ⊢ 7 ∈ V |
11 | 5, 10 | xpsn 7161 | . . . . 5 ⊢ ({1} × {7}) = {〈1, 7〉} |
12 | 8, 11 | uneq12i 4176 | . . . 4 ⊢ (({1} × {2}) ∪ ({1} × {7})) = ({〈1, 2〉} ∪ {〈1, 7〉}) |
13 | df-pr 4634 | . . . 4 ⊢ {〈1, 2〉, 〈1, 7〉} = ({〈1, 2〉} ∪ {〈1, 7〉}) | |
14 | 12, 13 | eqtr4i 2766 | . . 3 ⊢ (({1} × {2}) ∪ ({1} × {7})) = {〈1, 2〉, 〈1, 7〉} |
15 | 5nn 12350 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
16 | 15 | elexi 3501 | . . . . . 6 ⊢ 5 ∈ V |
17 | 16, 7 | xpsn 7161 | . . . . 5 ⊢ ({5} × {2}) = {〈5, 2〉} |
18 | 16, 10 | xpsn 7161 | . . . . 5 ⊢ ({5} × {7}) = {〈5, 7〉} |
19 | 17, 18 | uneq12i 4176 | . . . 4 ⊢ (({5} × {2}) ∪ ({5} × {7})) = ({〈5, 2〉} ∪ {〈5, 7〉}) |
20 | df-pr 4634 | . . . 4 ⊢ {〈5, 2〉, 〈5, 7〉} = ({〈5, 2〉} ∪ {〈5, 7〉}) | |
21 | 19, 20 | eqtr4i 2766 | . . 3 ⊢ (({5} × {2}) ∪ ({5} × {7})) = {〈5, 2〉, 〈5, 7〉} |
22 | 14, 21 | uneq12i 4176 | . 2 ⊢ ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
23 | 3, 4, 22 | 3eqtri 2767 | 1 ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3961 {csn 4631 {cpr 4633 〈cop 4637 × cxp 5687 1c1 11154 ℕcn 12264 2c2 12319 5c5 12322 7c7 12324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-1cn 11211 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |