| Step | Hyp | Ref
| Expression |
| 1 | | df-xp 5691 |
. 2
⊢ (𝐴 × (𝐵 ∪ 𝐶)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐵 ∪ 𝐶))} |
| 2 | | df-xp 5691 |
. . . 4
⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 3 | | df-xp 5691 |
. . . 4
⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} |
| 4 | 2, 3 | uneq12i 4166 |
. . 3
⊢ ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)}) |
| 5 | | elun 4153 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) |
| 6 | 5 | anbi2i 623 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶))) |
| 7 | | andi 1010 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 8 | 6, 7 | bitri 275 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐵 ∪ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 9 | 8 | opabbii 5210 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐵 ∪ 𝐶))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))} |
| 10 | | unopab 5224 |
. . . 4
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))} |
| 11 | 9, 10 | eqtr4i 2768 |
. . 3
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐵 ∪ 𝐶))} = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)}) |
| 12 | 4, 11 | eqtr4i 2768 |
. 2
⊢ ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐵 ∪ 𝐶))} |
| 13 | 1, 12 | eqtr4i 2768 |
1
⊢ (𝐴 × (𝐵 ∪ 𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) |