MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpundi Structured version   Visualization version   GIF version

Theorem xpundi 5655
Description: Distributive law for Cartesian product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
xpundi (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶))

Proof of Theorem xpundi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5595 . 2 (𝐴 × (𝐵𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))}
2 df-xp 5595 . . . 4 (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
3 df-xp 5595 . . . 4 (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}
42, 3uneq12i 4095 . . 3 ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)})
5 elun 4083 . . . . . . 7 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
65anbi2i 623 . . . . . 6 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑦𝐶)))
7 andi 1005 . . . . . 6 ((𝑥𝐴 ∧ (𝑦𝐵𝑦𝐶)) ↔ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶)))
86, 7bitri 274 . . . . 5 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) ↔ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶)))
98opabbii 5141 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶))}
10 unopab 5156 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶))}
119, 10eqtr4i 2769 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))} = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)})
124, 11eqtr4i 2769 . 2 ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))}
131, 12eqtr4i 2769 1 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 396  wo 844   = wceq 1539  wcel 2106  cun 3885  {copab 5136   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-opab 5137  df-xp 5595
This theorem is referenced by:  xpun  5660  djuassen  9934  xpdjuen  9935  ustund  23373  bj-2upln1upl  35214
  Copyright terms: Public domain W3C validator