MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpundi Structured version   Visualization version   GIF version

Theorem xpundi 5768
Description: Distributive law for Cartesian product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
xpundi (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶))

Proof of Theorem xpundi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5706 . 2 (𝐴 × (𝐵𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))}
2 df-xp 5706 . . . 4 (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
3 df-xp 5706 . . . 4 (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}
42, 3uneq12i 4189 . . 3 ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)})
5 elun 4176 . . . . . . 7 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
65anbi2i 622 . . . . . 6 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑦𝐶)))
7 andi 1008 . . . . . 6 ((𝑥𝐴 ∧ (𝑦𝐵𝑦𝐶)) ↔ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶)))
86, 7bitri 275 . . . . 5 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) ↔ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶)))
98opabbii 5233 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶))}
10 unopab 5248 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶))}
119, 10eqtr4i 2771 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))} = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)})
124, 11eqtr4i 2771 . 2 ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))}
131, 12eqtr4i 2771 1 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 846   = wceq 1537  wcel 2108  cun 3974  {copab 5228   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-opab 5229  df-xp 5706
This theorem is referenced by:  xpun  5773  naddasslem2  8751  djuassen  10248  xpdjuen  10249  ustund  24251  bj-2upln1upl  36990
  Copyright terms: Public domain W3C validator