MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elvv Structured version   Visualization version   GIF version

Theorem elvv 5662
Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elvv (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem elvv
StepHypRef Expression
1 elxp 5613 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
2 vex 3435 . . . . 5 𝑥 ∈ V
3 vex 3435 . . . . 5 𝑦 ∈ V
42, 3pm3.2i 471 . . . 4 (𝑥 ∈ V ∧ 𝑦 ∈ V)
54biantru 530 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
652exbii 1855 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
71, 6bitr4i 277 1 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1542  wex 1786  wcel 2110  Vcvv 3431  cop 4573   × cxp 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-dif 3895  df-un 3897  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-opab 5142  df-xp 5596
This theorem is referenced by:  elvvv  5663  elvvuni  5664  elopaelxp  5677  elrel  5707  copsex2gb  5715  relop  5758  elreldm  5843  dmsnn0  6109  funsndifnop  7020  1stval2  7841  2ndval2  7842  1st2val  7852  2nd2val  7853  dfopab2  7885  dfoprab3s  7886  dftpos4  8052  tpostpos  8053  fundmen  8804  cnvfi  8945  fundmge2nop0  14204  ssrelf  30951  fineqvac  33062  dfdm5  33743  dfrn5  33744  brtxp2  34179  pprodss4v  34182  brpprod3a  34184  brimg  34235  brxrn2  36501  fun2dmnopgexmpl  44744
  Copyright terms: Public domain W3C validator