| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elvv | Structured version Visualization version GIF version | ||
| Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| elvv | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 5646 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
| 2 | vex 3442 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 3442 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | pm3.2i 470 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 5 | 4 | biantru 529 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
| 6 | 5 | 2exbii 1849 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
| 7 | 1, 6 | bitr4i 278 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3438 〈cop 4585 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-opab 5158 df-xp 5629 |
| This theorem is referenced by: elvvv 5699 elvvuni 5700 elrel 5745 copsex2gb 5753 relop 5797 elreldm 5881 dmsnn0 6160 funsndifnop 7089 1stval2 7948 2ndval2 7949 1st2val 7959 2nd2val 7960 dfopab2 7994 dfoprab3s 7995 dftpos4 8185 tpostpos 8186 fundmen 8963 cnvfi 9100 fundmge2nop0 14428 ssrelf 32579 fineqvac 35091 dfdm5 35765 dfrn5 35766 brtxp2 35874 pprodss4v 35877 brpprod3a 35879 brimg 35930 brxrn2 38362 fun2dmnopgexmpl 47288 |
| Copyright terms: Public domain | W3C validator |