MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elvv Structured version   Visualization version   GIF version

Theorem elvv 5751
Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elvv (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem elvv
StepHypRef Expression
1 elxp 5700 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
2 vex 3479 . . . . 5 𝑥 ∈ V
3 vex 3479 . . . . 5 𝑦 ∈ V
42, 3pm3.2i 472 . . . 4 (𝑥 ∈ V ∧ 𝑦 ∈ V)
54biantru 531 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
652exbii 1852 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
71, 6bitr4i 278 1 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  Vcvv 3475  cop 4635   × cxp 5675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-opab 5212  df-xp 5683
This theorem is referenced by:  elvvv  5752  elvvuni  5753  elopaelxpOLD  5767  elrel  5799  copsex2gb  5807  relop  5851  elreldm  5935  dmsnn0  6207  funsndifnop  7149  1stval2  7992  2ndval2  7993  1st2val  8003  2nd2val  8004  dfopab2  8038  dfoprab3s  8039  dftpos4  8230  tpostpos  8231  fundmen  9031  cnvfi  9180  fundmge2nop0  14453  ssrelf  31844  fineqvac  34097  dfdm5  34744  dfrn5  34745  brtxp2  34853  pprodss4v  34856  brpprod3a  34858  brimg  34909  brxrn2  37245  fun2dmnopgexmpl  45992
  Copyright terms: Public domain W3C validator