Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elvv | Structured version Visualization version GIF version |
Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elvv | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 5612 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
2 | vex 3436 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3436 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | pm3.2i 471 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
5 | 4 | biantru 530 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
6 | 5 | 2exbii 1851 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
7 | 1, 6 | bitr4i 277 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 〈cop 4567 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 |
This theorem is referenced by: elvvv 5662 elvvuni 5663 elopaelxpOLD 5677 elrel 5708 copsex2gb 5716 relop 5759 elreldm 5844 dmsnn0 6110 funsndifnop 7023 1stval2 7848 2ndval2 7849 1st2val 7859 2nd2val 7860 dfopab2 7892 dfoprab3s 7893 dftpos4 8061 tpostpos 8062 fundmen 8821 cnvfi 8963 fundmge2nop0 14206 ssrelf 30955 fineqvac 33066 dfdm5 33747 dfrn5 33748 brtxp2 34183 pprodss4v 34186 brpprod3a 34188 brimg 34239 brxrn2 36505 fun2dmnopgexmpl 44776 |
Copyright terms: Public domain | W3C validator |