Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elvv | Structured version Visualization version GIF version |
Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elvv | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 5613 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
2 | vex 3435 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3435 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | pm3.2i 471 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
5 | 4 | biantru 530 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
6 | 5 | 2exbii 1855 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
7 | 1, 6 | bitr4i 277 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 ∃wex 1786 ∈ wcel 2110 Vcvv 3431 〈cop 4573 × cxp 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-dif 3895 df-un 3897 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-opab 5142 df-xp 5596 |
This theorem is referenced by: elvvv 5663 elvvuni 5664 elopaelxp 5677 elrel 5707 copsex2gb 5715 relop 5758 elreldm 5843 dmsnn0 6109 funsndifnop 7020 1stval2 7841 2ndval2 7842 1st2val 7852 2nd2val 7853 dfopab2 7885 dfoprab3s 7886 dftpos4 8052 tpostpos 8053 fundmen 8804 cnvfi 8945 fundmge2nop0 14204 ssrelf 30951 fineqvac 33062 dfdm5 33743 dfrn5 33744 brtxp2 34179 pprodss4v 34182 brpprod3a 34184 brimg 34235 brxrn2 36501 fun2dmnopgexmpl 44744 |
Copyright terms: Public domain | W3C validator |