![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elvv | Structured version Visualization version GIF version |
Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elvv | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 5698 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
2 | vex 3478 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3478 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | pm3.2i 471 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
5 | 4 | biantru 530 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
6 | 5 | 2exbii 1851 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
7 | 1, 6 | bitr4i 277 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ⟨cop 4633 × cxp 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-opab 5210 df-xp 5681 |
This theorem is referenced by: elvvv 5749 elvvuni 5750 elopaelxpOLD 5764 elrel 5796 copsex2gb 5804 relop 5848 elreldm 5932 dmsnn0 6203 funsndifnop 7145 1stval2 7988 2ndval2 7989 1st2val 7999 2nd2val 8000 dfopab2 8034 dfoprab3s 8035 dftpos4 8226 tpostpos 8227 fundmen 9027 cnvfi 9176 fundmge2nop0 14449 ssrelf 31831 fineqvac 34085 dfdm5 34732 dfrn5 34733 brtxp2 34841 pprodss4v 34844 brpprod3a 34846 brimg 34897 brxrn2 37233 fun2dmnopgexmpl 45978 |
Copyright terms: Public domain | W3C validator |