| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elvv | Structured version Visualization version GIF version | ||
| Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| elvv | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 5677 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
| 2 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 3463 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | pm3.2i 470 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 5 | 4 | biantru 529 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
| 6 | 5 | 2exbii 1849 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
| 7 | 1, 6 | bitr4i 278 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 〈cop 4607 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: elvvv 5730 elvvuni 5731 elopaelxpOLD 5745 elrel 5777 copsex2gb 5785 relop 5830 elreldm 5915 dmsnn0 6196 funsndifnop 7140 1stval2 8003 2ndval2 8004 1st2val 8014 2nd2val 8015 dfopab2 8049 dfoprab3s 8050 dftpos4 8242 tpostpos 8243 fundmen 9043 cnvfi 9188 fundmge2nop0 14518 ssrelf 32541 fineqvac 35074 dfdm5 35736 dfrn5 35737 brtxp2 35845 pprodss4v 35848 brpprod3a 35850 brimg 35901 brxrn2 38339 fun2dmnopgexmpl 47261 |
| Copyright terms: Public domain | W3C validator |