![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elvv | Structured version Visualization version GIF version |
Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elvv | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 5700 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
2 | vex 3479 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3479 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | pm3.2i 472 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
5 | 4 | biantru 531 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
6 | 5 | 2exbii 1852 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
7 | 1, 6 | bitr4i 278 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 ⟨cop 4635 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-xp 5683 |
This theorem is referenced by: elvvv 5752 elvvuni 5753 elopaelxpOLD 5767 elrel 5799 copsex2gb 5807 relop 5851 elreldm 5935 dmsnn0 6207 funsndifnop 7149 1stval2 7992 2ndval2 7993 1st2val 8003 2nd2val 8004 dfopab2 8038 dfoprab3s 8039 dftpos4 8230 tpostpos 8231 fundmen 9031 cnvfi 9180 fundmge2nop0 14453 ssrelf 31844 fineqvac 34097 dfdm5 34744 dfrn5 34745 brtxp2 34853 pprodss4v 34856 brpprod3a 34858 brimg 34909 brxrn2 37245 fun2dmnopgexmpl 45992 |
Copyright terms: Public domain | W3C validator |