![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elvv | Structured version Visualization version GIF version |
Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elvv | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 5723 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
2 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | pm3.2i 470 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
5 | 4 | biantru 529 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
6 | 5 | 2exbii 1847 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
7 | 1, 6 | bitr4i 278 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 〈cop 4654 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 |
This theorem is referenced by: elvvv 5775 elvvuni 5776 elopaelxpOLD 5790 elrel 5822 copsex2gb 5830 relop 5875 elreldm 5960 dmsnn0 6238 funsndifnop 7185 1stval2 8047 2ndval2 8048 1st2val 8058 2nd2val 8059 dfopab2 8093 dfoprab3s 8094 dftpos4 8286 tpostpos 8287 fundmen 9096 cnvfi 9243 fundmge2nop0 14551 ssrelf 32637 fineqvac 35073 dfdm5 35736 dfrn5 35737 brtxp2 35845 pprodss4v 35848 brpprod3a 35850 brimg 35901 brxrn2 38331 fun2dmnopgexmpl 47199 |
Copyright terms: Public domain | W3C validator |