| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunxpconst | Structured version Visualization version GIF version | ||
| Description: Membership in a union of Cartesian products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| iunxpconst | ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpiundir 5713 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
| 2 | iunid 5027 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
| 3 | 2 | xpeq1i 5667 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑥} × 𝐵) = (𝐴 × 𝐵) |
| 4 | 1, 3 | eqtr3i 2755 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {csn 4592 ∪ ciun 4958 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-iun 4960 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: ralxp 5808 rexxp 5809 mpompt 7506 mpompts 8047 fmpo 8050 fsumxp 15745 fprodxp 15955 dvfval 25805 indval2 32784 filnetlem3 36375 sge0xp 46434 xpiun 48150 |
| Copyright terms: Public domain | W3C validator |