Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunxpconst | Structured version Visualization version GIF version |
Description: Membership in a union of Cartesian products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
iunxpconst | ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpiundir 5592 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
2 | iunid 4949 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
3 | 2 | xpeq1i 5550 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑥} × 𝐵) = (𝐴 × 𝐵) |
4 | 1, 3 | eqtr3i 2783 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 {csn 4522 ∪ ciun 4883 × cxp 5522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-iun 4885 df-opab 5095 df-xp 5530 |
This theorem is referenced by: ralxp 5681 rexxp 5682 mpompt 7260 mpompts 7767 fmpo 7770 fsumxp 15175 fprodxp 15384 dvfval 24596 indval2 31501 filnetlem3 34118 sge0xp 43434 xpiun 44753 |
Copyright terms: Public domain | W3C validator |