MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxpconst Structured version   Visualization version   GIF version

Theorem iunxpconst 5709
Description: Membership in a union of Cartesian products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
iunxpconst 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iunxpconst
StepHypRef Expression
1 xpiundir 5708 . 2 ( 𝑥𝐴 {𝑥} × 𝐵) = 𝑥𝐴 ({𝑥} × 𝐵)
2 iunid 5025 . . 3 𝑥𝐴 {𝑥} = 𝐴
32xpeq1i 5664 . 2 ( 𝑥𝐴 {𝑥} × 𝐵) = (𝐴 × 𝐵)
41, 3eqtr3i 2767 1 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  {csn 4591   ciun 4959   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-iun 4961  df-opab 5173  df-xp 5644
This theorem is referenced by:  ralxp  5802  rexxp  5803  mpompt  7475  mpompts  8002  fmpo  8005  fsumxp  15664  fprodxp  15872  dvfval  25277  indval2  32653  filnetlem3  34881  sge0xp  44744  xpiun  46134
  Copyright terms: Public domain W3C validator