| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunxpconst | Structured version Visualization version GIF version | ||
| Description: Membership in a union of Cartesian products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| iunxpconst | ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpiundir 5688 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
| 2 | iunid 5009 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
| 3 | 2 | xpeq1i 5642 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑥} × 𝐵) = (𝐴 × 𝐵) |
| 4 | 1, 3 | eqtr3i 2756 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {csn 4576 ∪ ciun 4941 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-iun 4943 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: ralxp 5781 rexxp 5782 mpompt 7460 mpompts 7997 fmpo 8000 fsumxp 15676 fprodxp 15886 dvfval 25823 indval2 32830 filnetlem3 36413 sge0xp 46466 xpiun 48188 |
| Copyright terms: Public domain | W3C validator |