Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxpconst Structured version   Visualization version   GIF version

Theorem iunxpconst 5593
 Description: Membership in a union of Cartesian products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
iunxpconst 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iunxpconst
StepHypRef Expression
1 xpiundir 5592 . 2 ( 𝑥𝐴 {𝑥} × 𝐵) = 𝑥𝐴 ({𝑥} × 𝐵)
2 iunid 4949 . . 3 𝑥𝐴 {𝑥} = 𝐴
32xpeq1i 5550 . 2 ( 𝑥𝐴 {𝑥} × 𝐵) = (𝐴 × 𝐵)
41, 3eqtr3i 2783 1 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538  {csn 4522  ∪ ciun 4883   × cxp 5522 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-v 3411  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-iun 4885  df-opab 5095  df-xp 5530 This theorem is referenced by:  ralxp  5681  rexxp  5682  mpompt  7260  mpompts  7767  fmpo  7770  fsumxp  15175  fprodxp  15384  dvfval  24596  indval2  31501  filnetlem3  34118  sge0xp  43434  xpiun  44753
 Copyright terms: Public domain W3C validator