NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  leaddc1 GIF version

Theorem leaddc1 6214
Description: Addition law for cardinal less than. Theorem XI.2.23 of [Rosser] p. 377. (Contributed by SF, 12-Mar-2015.)
Assertion
Ref Expression
leaddc1 (((M NC N NC P NC ) Mc N) → (M +c P) ≤c (N +c P))

Proof of Theorem leaddc1
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 dflec2 6210 . . . 4 ((M NC N NC ) → (Mc Nx NC N = (M +c x)))
213adant3 975 . . 3 ((M NC N NC P NC ) → (Mc Nx NC N = (M +c x)))
3 ncaddccl 6144 . . . . . . 7 ((M NC P NC ) → (M +c P) NC )
4 addlecncs 6209 . . . . . . 7 (((M +c P) NC x NC ) → (M +c P) ≤c ((M +c P) +c x))
53, 4sylan 457 . . . . . 6 (((M NC P NC ) x NC ) → (M +c P) ≤c ((M +c P) +c x))
6 addceq1 4383 . . . . . . . 8 (N = (M +c x) → (N +c P) = ((M +c x) +c P))
7 addc32 4416 . . . . . . . 8 ((M +c x) +c P) = ((M +c P) +c x)
86, 7syl6eq 2401 . . . . . . 7 (N = (M +c x) → (N +c P) = ((M +c P) +c x))
98breq2d 4651 . . . . . 6 (N = (M +c x) → ((M +c P) ≤c (N +c P) ↔ (M +c P) ≤c ((M +c P) +c x)))
105, 9syl5ibrcom 213 . . . . 5 (((M NC P NC ) x NC ) → (N = (M +c x) → (M +c P) ≤c (N +c P)))
1110rexlimdva 2738 . . . 4 ((M NC P NC ) → (x NC N = (M +c x) → (M +c P) ≤c (N +c P)))
12113adant2 974 . . 3 ((M NC N NC P NC ) → (x NC N = (M +c x) → (M +c P) ≤c (N +c P)))
132, 12sylbid 206 . 2 ((M NC N NC P NC ) → (Mc N → (M +c P) ≤c (N +c P)))
1413imp 418 1 (((M NC N NC P NC ) Mc N) → (M +c P) ≤c (N +c P))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   w3a 934   = wceq 1642   wcel 1710  wrex 2615   +c cplc 4375   class class class wbr 4639   NC cncs 6088  c clec 6089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-swap 4724  df-sset 4725  df-co 4726  df-ima 4727  df-si 4728  df-id 4767  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-res 4788  df-fun 4789  df-fn 4790  df-f 4791  df-f1 4792  df-fo 4793  df-f1o 4794  df-2nd 4797  df-txp 5736  df-ins2 5750  df-ins3 5752  df-image 5754  df-ins4 5756  df-si3 5758  df-funs 5760  df-fns 5762  df-trans 5899  df-sym 5908  df-er 5909  df-ec 5947  df-qs 5951  df-en 6029  df-ncs 6098  df-lec 6099  df-nc 6101
This theorem is referenced by:  leaddc2  6215  nnltp1c  6262
  Copyright terms: Public domain W3C validator