New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5ibrcom | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
Ref | Expression |
---|---|
syl5ibr.1 | ⊢ (φ → θ) |
syl5ibr.2 | ⊢ (χ → (ψ ↔ θ)) |
Ref | Expression |
---|---|
syl5ibrcom | ⊢ (φ → (χ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 | . . 3 ⊢ (φ → θ) | |
2 | syl5ibr.2 | . . 3 ⊢ (χ → (ψ ↔ θ)) | |
3 | 1, 2 | syl5ibr 212 | . 2 ⊢ (χ → (φ → ψ)) |
4 | 3 | com12 27 | 1 ⊢ (φ → (χ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: biimprcd 216 nfsb4t 2080 elsnc2g 3762 pwadjoin 4120 opkth1g 4131 pw1disj 4168 eqpw1uni 4331 nnc0suc 4413 nndisjeq 4430 leltfintr 4459 lefinlteq 4464 lenltfin 4470 ncfinraise 4482 tfindi 4497 tfinsuc 4499 evenodddisj 4517 nnadjoin 4521 nnpweq 4524 sfinltfin 4536 vfin1cltv 4548 nulnnn 4557 funcnvuni 5162 foco2 5427 fsn 5433 fconst2g 5453 funfvima 5460 fntxp 5805 fnpprod 5844 enadjlem1 6060 enmap2lem3 6066 ncdisjun 6137 dflec2 6211 lectr 6212 leaddc1 6215 tlecg 6231 ce0tb 6239 ce0lenc1 6240 nclenn 6250 addcdi 6251 muc0or 6253 lemuc1 6254 lecadd2 6267 ncslesuc 6268 nmembers1lem3 6271 nncdiv3 6278 nnc3n3p1 6279 nchoicelem1 6290 nchoicelem2 6291 nchoicelem6 6295 |
Copyright terms: Public domain | W3C validator |