New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > breq1 | GIF version |
Description: Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
breq1 | ⊢ (A = B → (ARC ↔ BRC)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4579 | . . 3 ⊢ (A = B → 〈A, C〉 = 〈B, C〉) | |
2 | 1 | eleq1d 2419 | . 2 ⊢ (A = B → (〈A, C〉 ∈ R ↔ 〈B, C〉 ∈ R)) |
3 | df-br 4641 | . 2 ⊢ (ARC ↔ 〈A, C〉 ∈ R) | |
4 | df-br 4641 | . 2 ⊢ (BRC ↔ 〈B, C〉 ∈ R) | |
5 | 2, 3, 4 | 3bitr4g 279 | 1 ⊢ (A = B → (ARC ↔ BRC)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 〈cop 4562 class class class wbr 4640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 |
This theorem is referenced by: breq12 4645 breq1i 4647 breq1d 4650 nbrne2 4658 brab1 4685 vtoclr 4817 brco 4884 brcnv 4893 dfdmf 4906 elimapw1 4945 dfrnf 4963 dfres2 5003 imasn 5019 coi1 5095 dffun6f 5124 funmo 5126 fun11 5160 fneu 5188 fveq2 5329 nfunsn 5354 dmfco 5382 dff13 5472 isorel 5490 isocnv 5492 isotr 5496 isomin 5497 isoini 5498 f1oiso 5500 f1oiso2 5501 funsi 5521 caovord 5630 caovord3 5632 brsnsi 5774 brsnsi1 5776 brco1st 5778 brco2nd 5779 trtxp 5782 elfix 5788 op1st2nd 5791 brimage 5794 txpcofun 5804 otsnelsi3 5806 addcfnex 5825 qrpprod 5837 brpprod 5840 dmpprod 5841 fnpprod 5844 clos1ex 5877 clos1conn 5880 clos1basesuc 5883 trd 5922 symd 5925 antid 5930 connexd 5932 weds 5939 en0 6043 fndmeng 6047 endisj 6052 xpassenlem 6057 xpassen 6058 enpw1 6063 enmap2 6069 enpw1pw 6076 nenpw1pwlem2 6086 enpw 6088 lecex 6116 ovmuc 6131 mucnc 6132 mucex 6134 ncdisjun 6137 ceexlem1 6174 ceex 6175 elce 6176 ltlenlec 6208 leltctr 6213 leconnnc 6219 lenc 6224 ce2le 6234 ce0lenc1 6240 tcfnex 6245 nclenn 6250 csucex 6260 addccan2nclem1 6264 ncslesuc 6268 nmembers1lem1 6269 nmembers1lem3 6271 nncdiv3lem1 6276 nncdiv3lem2 6277 nnc3n3p1 6279 spacvallem1 6282 nchoicelem11 6300 nchoicelem16 6305 nchoicelem19 6308 fnfreclem3 6320 fnfrec 6321 frecsuc 6323 |
Copyright terms: Public domain | W3C validator |