![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > cbvoprab12 | GIF version |
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
cbvoprab12.1 | ⊢ Ⅎwφ |
cbvoprab12.2 | ⊢ Ⅎvφ |
cbvoprab12.3 | ⊢ Ⅎxψ |
cbvoprab12.4 | ⊢ Ⅎyψ |
cbvoprab12.5 | ⊢ ((x = w ∧ y = v) → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvoprab12 | ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈〈w, v〉, z〉 ∣ ψ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . . . 5 ⊢ Ⅎw u = 〈x, y〉 | |
2 | cbvoprab12.1 | . . . . 5 ⊢ Ⅎwφ | |
3 | 1, 2 | nfan 1824 | . . . 4 ⊢ Ⅎw(u = 〈x, y〉 ∧ φ) |
4 | nfv 1619 | . . . . 5 ⊢ Ⅎv u = 〈x, y〉 | |
5 | cbvoprab12.2 | . . . . 5 ⊢ Ⅎvφ | |
6 | 4, 5 | nfan 1824 | . . . 4 ⊢ Ⅎv(u = 〈x, y〉 ∧ φ) |
7 | nfv 1619 | . . . . 5 ⊢ Ⅎx u = 〈w, v〉 | |
8 | cbvoprab12.3 | . . . . 5 ⊢ Ⅎxψ | |
9 | 7, 8 | nfan 1824 | . . . 4 ⊢ Ⅎx(u = 〈w, v〉 ∧ ψ) |
10 | nfv 1619 | . . . . 5 ⊢ Ⅎy u = 〈w, v〉 | |
11 | cbvoprab12.4 | . . . . 5 ⊢ Ⅎyψ | |
12 | 10, 11 | nfan 1824 | . . . 4 ⊢ Ⅎy(u = 〈w, v〉 ∧ ψ) |
13 | opeq12 4580 | . . . . . 6 ⊢ ((x = w ∧ y = v) → 〈x, y〉 = 〈w, v〉) | |
14 | 13 | eqeq2d 2364 | . . . . 5 ⊢ ((x = w ∧ y = v) → (u = 〈x, y〉 ↔ u = 〈w, v〉)) |
15 | cbvoprab12.5 | . . . . 5 ⊢ ((x = w ∧ y = v) → (φ ↔ ψ)) | |
16 | 14, 15 | anbi12d 691 | . . . 4 ⊢ ((x = w ∧ y = v) → ((u = 〈x, y〉 ∧ φ) ↔ (u = 〈w, v〉 ∧ ψ))) |
17 | 3, 6, 9, 12, 16 | cbvex2 2005 | . . 3 ⊢ (∃x∃y(u = 〈x, y〉 ∧ φ) ↔ ∃w∃v(u = 〈w, v〉 ∧ ψ)) |
18 | 17 | opabbii 4626 | . 2 ⊢ {〈u, z〉 ∣ ∃x∃y(u = 〈x, y〉 ∧ φ)} = {〈u, z〉 ∣ ∃w∃v(u = 〈w, v〉 ∧ ψ)} |
19 | dfoprab2 5558 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈u, z〉 ∣ ∃x∃y(u = 〈x, y〉 ∧ φ)} | |
20 | dfoprab2 5558 | . 2 ⊢ {〈〈w, v〉, z〉 ∣ ψ} = {〈u, z〉 ∣ ∃w∃v(u = 〈w, v〉 ∧ ψ)} | |
21 | 18, 19, 20 | 3eqtr4i 2383 | 1 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈〈w, v〉, z〉 ∣ ψ} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 〈cop 4561 {copab 4622 {coprab 5527 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-addc 4378 df-nnc 4379 df-phi 4565 df-op 4566 df-opab 4623 df-oprab 5528 |
This theorem is referenced by: cbvoprab12v 5570 cbvmpt2x 5678 fmpt2x 5730 |
Copyright terms: Public domain | W3C validator |