| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cbvoprab12 | GIF version | ||
| Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| cbvoprab12.1 | ⊢ Ⅎwφ |
| cbvoprab12.2 | ⊢ Ⅎvφ |
| cbvoprab12.3 | ⊢ Ⅎxψ |
| cbvoprab12.4 | ⊢ Ⅎyψ |
| cbvoprab12.5 | ⊢ ((x = w ∧ y = v) → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| cbvoprab12 | ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈〈w, v〉, z〉 ∣ ψ} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1619 | . . . . 5 ⊢ Ⅎw u = 〈x, y〉 | |
| 2 | cbvoprab12.1 | . . . . 5 ⊢ Ⅎwφ | |
| 3 | 1, 2 | nfan 1824 | . . . 4 ⊢ Ⅎw(u = 〈x, y〉 ∧ φ) |
| 4 | nfv 1619 | . . . . 5 ⊢ Ⅎv u = 〈x, y〉 | |
| 5 | cbvoprab12.2 | . . . . 5 ⊢ Ⅎvφ | |
| 6 | 4, 5 | nfan 1824 | . . . 4 ⊢ Ⅎv(u = 〈x, y〉 ∧ φ) |
| 7 | nfv 1619 | . . . . 5 ⊢ Ⅎx u = 〈w, v〉 | |
| 8 | cbvoprab12.3 | . . . . 5 ⊢ Ⅎxψ | |
| 9 | 7, 8 | nfan 1824 | . . . 4 ⊢ Ⅎx(u = 〈w, v〉 ∧ ψ) |
| 10 | nfv 1619 | . . . . 5 ⊢ Ⅎy u = 〈w, v〉 | |
| 11 | cbvoprab12.4 | . . . . 5 ⊢ Ⅎyψ | |
| 12 | 10, 11 | nfan 1824 | . . . 4 ⊢ Ⅎy(u = 〈w, v〉 ∧ ψ) |
| 13 | opeq12 4581 | . . . . . 6 ⊢ ((x = w ∧ y = v) → 〈x, y〉 = 〈w, v〉) | |
| 14 | 13 | eqeq2d 2364 | . . . . 5 ⊢ ((x = w ∧ y = v) → (u = 〈x, y〉 ↔ u = 〈w, v〉)) |
| 15 | cbvoprab12.5 | . . . . 5 ⊢ ((x = w ∧ y = v) → (φ ↔ ψ)) | |
| 16 | 14, 15 | anbi12d 691 | . . . 4 ⊢ ((x = w ∧ y = v) → ((u = 〈x, y〉 ∧ φ) ↔ (u = 〈w, v〉 ∧ ψ))) |
| 17 | 3, 6, 9, 12, 16 | cbvex2 2005 | . . 3 ⊢ (∃x∃y(u = 〈x, y〉 ∧ φ) ↔ ∃w∃v(u = 〈w, v〉 ∧ ψ)) |
| 18 | 17 | opabbii 4627 | . 2 ⊢ {〈u, z〉 ∣ ∃x∃y(u = 〈x, y〉 ∧ φ)} = {〈u, z〉 ∣ ∃w∃v(u = 〈w, v〉 ∧ ψ)} |
| 19 | dfoprab2 5559 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈u, z〉 ∣ ∃x∃y(u = 〈x, y〉 ∧ φ)} | |
| 20 | dfoprab2 5559 | . 2 ⊢ {〈〈w, v〉, z〉 ∣ ψ} = {〈u, z〉 ∣ ∃w∃v(u = 〈w, v〉 ∧ ψ)} | |
| 21 | 18, 19, 20 | 3eqtr4i 2383 | 1 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈〈w, v〉, z〉 ∣ ψ} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 〈cop 4562 {copab 4623 {coprab 5528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 df-oprab 5529 |
| This theorem is referenced by: cbvoprab12v 5571 cbvmpt2x 5679 fmpt2x 5731 |
| Copyright terms: Public domain | W3C validator |