New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xpkeq2 | GIF version |
Description: Equality theorem for Kuratowski cross product. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
xpkeq2 | ⊢ (A = B → (C ×k A) = (C ×k B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 2809 | . . . 4 ⊢ (A = B → (∃z ∈ A x = ⟪y, z⟫ ↔ ∃z ∈ B x = ⟪y, z⟫)) | |
2 | 1 | rexbidv 2636 | . . 3 ⊢ (A = B → (∃y ∈ C ∃z ∈ A x = ⟪y, z⟫ ↔ ∃y ∈ C ∃z ∈ B x = ⟪y, z⟫)) |
3 | elxpk2 4198 | . . 3 ⊢ (x ∈ (C ×k A) ↔ ∃y ∈ C ∃z ∈ A x = ⟪y, z⟫) | |
4 | elxpk2 4198 | . . 3 ⊢ (x ∈ (C ×k B) ↔ ∃y ∈ C ∃z ∈ B x = ⟪y, z⟫) | |
5 | 2, 3, 4 | 3bitr4g 279 | . 2 ⊢ (A = B → (x ∈ (C ×k A) ↔ x ∈ (C ×k B))) |
6 | 5 | eqrdv 2351 | 1 ⊢ (A = B → (C ×k A) = (C ×k B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 ⟪copk 4058 ×k cxpk 4175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 |
This theorem is referenced by: xpkeq12 4201 xpkeq2i 4203 xpkeq2d 4206 xpkvexg 4286 |
Copyright terms: Public domain | W3C validator |