| Step | Hyp | Ref
| Expression |
| 1 | | nenpw1pwlem1.1 |
. . 3
⊢ S = {x ∈ A ∣ ¬ x
∈ (r
‘{x})} |
| 2 | | dfrab2 3531 |
. . 3
⊢ {x ∈ A ∣ ¬
x ∈
(r ‘{x})} = ({x ∣ ¬ x
∈ (r
‘{x})} ∩ A) |
| 3 | 1, 2 | eqtri 2373 |
. 2
⊢ S = ({x ∣ ¬ x
∈ (r
‘{x})} ∩ A) |
| 4 | | vex 2863 |
. . . . . . 7
⊢ x ∈
V |
| 5 | 4 | elcompl 3226 |
. . . . . 6
⊢ (x ∈ ∼
⋃1dom ( FullFun r ∩ S ) ↔
¬ x ∈
⋃1dom ( FullFun r ∩ S
)) |
| 6 | | eldm2 4900 |
. . . . . . . 8
⊢ ({x} ∈ dom ( FullFun r ∩
S ) ↔ ∃y〈{x}, y〉 ∈ ( FullFun r ∩ S
)) |
| 7 | | elin 3220 |
. . . . . . . . . 10
⊢ (〈{x}, y〉 ∈ ( FullFun r ∩ S ) ↔
(〈{x},
y〉 ∈ FullFun r ∧ 〈{x}, y〉 ∈ S
)) |
| 8 | | snex 4112 |
. . . . . . . . . . . . 13
⊢ {x} ∈
V |
| 9 | 8 | brfullfun 5867 |
. . . . . . . . . . . 12
⊢ ({x} FullFun ry ↔
(r ‘{x}) = y) |
| 10 | | df-br 4641 |
. . . . . . . . . . . 12
⊢ ({x} FullFun ry ↔ 〈{x}, y〉 ∈ FullFun r) |
| 11 | | eqcom 2355 |
. . . . . . . . . . . 12
⊢ ((r ‘{x}) =
y ↔ y = (r
‘{x})) |
| 12 | 9, 10, 11 | 3bitr3i 266 |
. . . . . . . . . . 11
⊢ (〈{x}, y〉 ∈ FullFun r ↔ y =
(r ‘{x})) |
| 13 | | vex 2863 |
. . . . . . . . . . . 12
⊢ y ∈
V |
| 14 | 4, 13 | opelssetsn 4761 |
. . . . . . . . . . 11
⊢ (〈{x}, y〉 ∈ S ↔ x ∈ y) |
| 15 | 12, 14 | anbi12i 678 |
. . . . . . . . . 10
⊢ ((〈{x}, y〉 ∈ FullFun r ∧ 〈{x}, y〉 ∈ S ) ↔
(y = (r
‘{x}) ∧ x ∈ y)) |
| 16 | 7, 15 | bitri 240 |
. . . . . . . . 9
⊢ (〈{x}, y〉 ∈ ( FullFun r ∩ S ) ↔
(y = (r
‘{x}) ∧ x ∈ y)) |
| 17 | 16 | exbii 1582 |
. . . . . . . 8
⊢ (∃y〈{x}, y〉 ∈ ( FullFun r ∩ S ) ↔
∃y(y = (r ‘{x})
∧ x ∈ y)) |
| 18 | 6, 17 | bitri 240 |
. . . . . . 7
⊢ ({x} ∈ dom ( FullFun r ∩
S ) ↔ ∃y(y = (r
‘{x}) ∧ x ∈ y)) |
| 19 | 4 | eluni1 4174 |
. . . . . . 7
⊢ (x ∈
⋃1dom ( FullFun r ∩ S ) ↔
{x} ∈ dom
( FullFun r
∩ S )) |
| 20 | | fvex 5340 |
. . . . . . . 8
⊢ (r ‘{x})
∈ V |
| 21 | 20 | clel3 2978 |
. . . . . . 7
⊢ (x ∈ (r ‘{x})
↔ ∃y(y = (r ‘{x})
∧ x ∈ y)) |
| 22 | 18, 19, 21 | 3bitr4i 268 |
. . . . . 6
⊢ (x ∈
⋃1dom ( FullFun r ∩ S ) ↔
x ∈
(r ‘{x})) |
| 23 | 5, 22 | xchbinx 301 |
. . . . 5
⊢ (x ∈ ∼
⋃1dom ( FullFun r ∩ S ) ↔
¬ x ∈
(r ‘{x})) |
| 24 | 23 | eqabi 2465 |
. . . 4
⊢ ∼
⋃1dom ( FullFun r ∩ S ) =
{x ∣
¬ x ∈
(r ‘{x})} |
| 25 | | vex 2863 |
. . . . . . . . 9
⊢ r ∈
V |
| 26 | 25 | fullfunex 5861 |
. . . . . . . 8
⊢ FullFun r ∈ V |
| 27 | | ssetex 4745 |
. . . . . . . 8
⊢ S ∈
V |
| 28 | 26, 27 | inex 4106 |
. . . . . . 7
⊢ ( FullFun r ∩
S ) ∈
V |
| 29 | 28 | dmex 5107 |
. . . . . 6
⊢ dom ( FullFun r ∩
S ) ∈
V |
| 30 | 29 | uni1ex 4294 |
. . . . 5
⊢
⋃1dom ( FullFun r ∩ S ) ∈ V |
| 31 | 30 | complex 4105 |
. . . 4
⊢ ∼
⋃1dom ( FullFun r ∩ S ) ∈ V |
| 32 | 24, 31 | eqeltrri 2424 |
. . 3
⊢ {x ∣ ¬
x ∈
(r ‘{x})} ∈
V |
| 33 | | inexg 4101 |
. . 3
⊢ (({x ∣ ¬
x ∈
(r ‘{x})} ∈ V ∧ A ∈ V) →
({x ∣
¬ x ∈
(r ‘{x})} ∩ A)
∈ V) |
| 34 | 32, 33 | mpan 651 |
. 2
⊢ (A ∈ V → ({x
∣ ¬ x ∈ (r ‘{x})}
∩ A) ∈ V) |
| 35 | 3, 34 | syl5eqel 2437 |
1
⊢ (A ∈ V → S ∈ V) |