NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nenpw1pwlem1 GIF version

Theorem nenpw1pwlem1 6085
Description: Lemma for nenpw1pw 6087. Set up stratification. (Contributed by SF, 10-Mar-2015.)
Hypothesis
Ref Expression
nenpw1pwlem1.1 S = {x A ¬ x (r ‘{x})}
Assertion
Ref Expression
nenpw1pwlem1 (A VS V)
Distinct variable groups:   x,A   x,r
Allowed substitution hints:   A(r)   S(x,r)   V(x,r)

Proof of Theorem nenpw1pwlem1
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 nenpw1pwlem1.1 . . 3 S = {x A ¬ x (r ‘{x})}
2 dfrab2 3531 . . 3 {x A ¬ x (r ‘{x})} = ({x ¬ x (r ‘{x})} ∩ A)
31, 2eqtri 2373 . 2 S = ({x ¬ x (r ‘{x})} ∩ A)
4 vex 2863 . . . . . . 7 x V
54elcompl 3226 . . . . . 6 (x ∼ ⋃1dom ( FullFun r S ) ↔ ¬ x 1dom ( FullFun r S ))
6 eldm2 4900 . . . . . . . 8 ({x} dom ( FullFun r S ) ↔ y{x}, y ( FullFun r S ))
7 elin 3220 . . . . . . . . . 10 ({x}, y ( FullFun r S ) ↔ ({x}, y FullFun r {x}, y S ))
8 snex 4112 . . . . . . . . . . . . 13 {x} V
98brfullfun 5867 . . . . . . . . . . . 12 ({x} FullFun ry ↔ (r ‘{x}) = y)
10 df-br 4641 . . . . . . . . . . . 12 ({x} FullFun ry{x}, y FullFun r)
11 eqcom 2355 . . . . . . . . . . . 12 ((r ‘{x}) = yy = (r ‘{x}))
129, 10, 113bitr3i 266 . . . . . . . . . . 11 ({x}, y FullFun ry = (r ‘{x}))
13 vex 2863 . . . . . . . . . . . 12 y V
144, 13opelssetsn 4761 . . . . . . . . . . 11 ({x}, y S x y)
1512, 14anbi12i 678 . . . . . . . . . 10 (({x}, y FullFun r {x}, y S ) ↔ (y = (r ‘{x}) x y))
167, 15bitri 240 . . . . . . . . 9 ({x}, y ( FullFun r S ) ↔ (y = (r ‘{x}) x y))
1716exbii 1582 . . . . . . . 8 (y{x}, y ( FullFun r S ) ↔ y(y = (r ‘{x}) x y))
186, 17bitri 240 . . . . . . 7 ({x} dom ( FullFun r S ) ↔ y(y = (r ‘{x}) x y))
194eluni1 4174 . . . . . . 7 (x 1dom ( FullFun r S ) ↔ {x} dom ( FullFun r S ))
20 fvex 5340 . . . . . . . 8 (r ‘{x}) V
2120clel3 2978 . . . . . . 7 (x (r ‘{x}) ↔ y(y = (r ‘{x}) x y))
2218, 19, 213bitr4i 268 . . . . . 6 (x 1dom ( FullFun r S ) ↔ x (r ‘{x}))
235, 22xchbinx 301 . . . . 5 (x ∼ ⋃1dom ( FullFun r S ) ↔ ¬ x (r ‘{x}))
2423abbi2i 2465 . . . 4 ∼ ⋃1dom ( FullFun r S ) = {x ¬ x (r ‘{x})}
25 vex 2863 . . . . . . . . 9 r V
2625fullfunex 5861 . . . . . . . 8 FullFun r V
27 ssetex 4745 . . . . . . . 8 S V
2826, 27inex 4106 . . . . . . 7 ( FullFun r S ) V
2928dmex 5107 . . . . . 6 dom ( FullFun r S ) V
3029uni1ex 4294 . . . . 5 1dom ( FullFun r S ) V
3130complex 4105 . . . 4 ∼ ⋃1dom ( FullFun r S ) V
3224, 31eqeltrri 2424 . . 3 {x ¬ x (r ‘{x})} V
33 inexg 4101 . . 3 (({x ¬ x (r ‘{x})} V A V) → ({x ¬ x (r ‘{x})} ∩ A) V)
3432, 33mpan 651 . 2 (A V → ({x ¬ x (r ‘{x})} ∩ A) V)
353, 34syl5eqel 2437 1 (A VS V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358  wex 1541   = wceq 1642   wcel 1710  {cab 2339  {crab 2619  Vcvv 2860  ccompl 3206  cin 3209  {csn 3738  1cuni1 4134  cop 4562   class class class wbr 4640   S csset 4720  dom cdm 4773  cfv 4782   FullFun cfullfun 5768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-fv 4796  df-2nd 4798  df-fullfun 5769
This theorem is referenced by:  nenpw1pwlem2  6086
  Copyright terms: Public domain W3C validator