New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > inex | GIF version |
Description: The intersection of two sets is a set. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
boolex.1 | ⊢ A ∈ V |
boolex.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
inex | ⊢ (A ∩ B) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | boolex.1 | . 2 ⊢ A ∈ V | |
2 | boolex.2 | . 2 ⊢ B ∈ V | |
3 | inexg 4101 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A ∩ B) ∈ V) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (A ∩ B) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 |
This theorem is referenced by: cnvkexg 4287 ssetkex 4295 sikexg 4297 ins2kexg 4306 ins3kexg 4307 idkex 4315 addcexlem 4383 nnsucelrlem1 4425 nndisjeq 4430 preaddccan2lem1 4455 ltfinex 4465 ssfin 4471 ncfinraiselem2 4481 ncfinlowerlem1 4483 tfinrelkex 4488 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelkex 4526 sfintfinlem1 4532 tfinnnlem1 4534 spfinex 4538 phiexg 4572 opexg 4588 proj1exg 4592 proj2exg 4593 phialllem1 4617 phialllem2 4618 setconslem5 4736 1stex 4740 swapex 4743 ssetex 4745 imaexg 4747 coexg 4750 siexg 4753 idex 5505 mptexlem 5811 composeex 5821 addcfnex 5825 funsex 5829 fnsex 5833 crossex 5851 domfnex 5871 ranfnex 5872 clos1ex 5877 transex 5911 refex 5912 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 partialex 5918 strictex 5919 weex 5920 erex 5921 mapexi 6004 fnpm 6009 enpw1lem1 6062 enmap2lem1 6064 enmap1lem1 6070 nenpw1pwlem1 6085 ovmuc 6131 mucex 6134 ovcelem1 6172 ceex 6175 sbthlem1 6204 tcfnex 6245 nmembers1lem1 6269 nncdiv3lem2 6277 nnc3n3p1 6279 spacvallem1 6282 nchoicelem11 6300 nchoicelem18 6307 |
Copyright terms: Public domain | W3C validator |