NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iotaint GIF version

Theorem iotaint 4353
Description: Equivalence between two different forms of . (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
iotaint (∃!xφ → (℩xφ) = {x φ})

Proof of Theorem iotaint
StepHypRef Expression
1 iotauni 4352 . 2 (∃!xφ → (℩xφ) = {x φ})
2 uniintab 3965 . . 3 (∃!xφ{x φ} = {x φ})
32biimpi 186 . 2 (∃!xφ{x φ} = {x φ})
41, 3eqtrd 2385 1 (∃!xφ → (℩xφ) = {x φ})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  ∃!weu 2204  {cab 2339  cuni 3892  cint 3927  cio 4338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iota 4340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator