Step | Hyp | Ref
| Expression |
1 | | elncs 6120 |
. 2
⊢ (M ∈ NC ↔ ∃y M = Nc y) |
2 | | ncex 6118 |
. . . . . . 7
⊢ Nc y ∈ V |
3 | | ncex 6118 |
. . . . . . 7
⊢ Nc A ∈ V |
4 | 2, 3 | brlec 6114 |
. . . . . 6
⊢ ( Nc y
≤c Nc A ↔ ∃p ∈ Nc y∃q ∈ Nc Ap ⊆ q) |
5 | | elnc 6126 |
. . . . . . . . . . 11
⊢ (p ∈ Nc y ↔ p ≈ y) |
6 | | bren 6031 |
. . . . . . . . . . 11
⊢ (p ≈ y
↔ ∃f f:p–1-1-onto→y) |
7 | 5, 6 | bitri 240 |
. . . . . . . . . 10
⊢ (p ∈ Nc y ↔ ∃f f:p–1-1-onto→y) |
8 | | elnc 6126 |
. . . . . . . . . . 11
⊢ (q ∈ Nc A ↔ q ≈ A) |
9 | | bren 6031 |
. . . . . . . . . . 11
⊢ (q ≈ A
↔ ∃g g:q–1-1-onto→A) |
10 | 8, 9 | bitri 240 |
. . . . . . . . . 10
⊢ (q ∈ Nc A ↔ ∃g g:q–1-1-onto→A) |
11 | 7, 10 | anbi12i 678 |
. . . . . . . . 9
⊢ ((p ∈ Nc y ∧ q ∈ Nc A) ↔ (∃f f:p–1-1-onto→y ∧ ∃g g:q–1-1-onto→A)) |
12 | | eeanv 1913 |
. . . . . . . . 9
⊢ (∃f∃g(f:p–1-1-onto→y ∧ g:q–1-1-onto→A) ↔
(∃f
f:p–1-1-onto→y ∧ ∃g g:q–1-1-onto→A)) |
13 | 11, 12 | bitr4i 243 |
. . . . . . . 8
⊢ ((p ∈ Nc y ∧ q ∈ Nc A) ↔ ∃f∃g(f:p–1-1-onto→y ∧ g:q–1-1-onto→A)) |
14 | | f1of1 5287 |
. . . . . . . . . . . . . . . 16
⊢ (g:q–1-1-onto→A →
g:q–1-1→A) |
15 | 14 | 3ad2ant2 977 |
. . . . . . . . . . . . . . 15
⊢ ((f:p–1-1-onto→y ∧ g:q–1-1-onto→A ∧ p ⊆ q) →
g:q–1-1→A) |
16 | | simp3 957 |
. . . . . . . . . . . . . . 15
⊢ ((f:p–1-1-onto→y ∧ g:q–1-1-onto→A ∧ p ⊆ q) →
p ⊆
q) |
17 | | f1ores 5301 |
. . . . . . . . . . . . . . 15
⊢ ((g:q–1-1→A
∧ p ⊆ q) →
(g ↾
p):p–1-1-onto→(g “
p)) |
18 | 15, 16, 17 | syl2anc 642 |
. . . . . . . . . . . . . 14
⊢ ((f:p–1-1-onto→y ∧ g:q–1-1-onto→A ∧ p ⊆ q) →
(g ↾
p):p–1-1-onto→(g “
p)) |
19 | | f1ocnv 5300 |
. . . . . . . . . . . . . . 15
⊢ (f:p–1-1-onto→y →
◡f:y–1-1-onto→p) |
20 | 19 | 3ad2ant1 976 |
. . . . . . . . . . . . . 14
⊢ ((f:p–1-1-onto→y ∧ g:q–1-1-onto→A ∧ p ⊆ q) →
◡f:y–1-1-onto→p) |
21 | | f1oco 5309 |
. . . . . . . . . . . . . 14
⊢ (((g ↾ p):p–1-1-onto→(g “
p) ∧ ◡f:y–1-1-onto→p) →
((g ↾
p) ∘
◡f):y–1-1-onto→(g “
p)) |
22 | 18, 20, 21 | syl2anc 642 |
. . . . . . . . . . . . 13
⊢ ((f:p–1-1-onto→y ∧ g:q–1-1-onto→A ∧ p ⊆ q) →
((g ↾
p) ∘
◡f):y–1-1-onto→(g “
p)) |
23 | | f1ocnv 5300 |
. . . . . . . . . . . . 13
⊢ (((g ↾ p) ∘ ◡f):y–1-1-onto→(g “
p) → ◡((g
↾ p)
∘ ◡f):(g “
p)–1-1-onto→y) |
24 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ g ∈
V |
25 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ p ∈
V |
26 | 24, 25 | resex 5118 |
. . . . . . . . . . . . . . . 16
⊢ (g ↾ p) ∈
V |
27 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ f ∈
V |
28 | 27 | cnvex 5103 |
. . . . . . . . . . . . . . . 16
⊢ ◡f ∈ V |
29 | 26, 28 | coex 4751 |
. . . . . . . . . . . . . . 15
⊢ ((g ↾ p) ∘ ◡f) ∈ V |
30 | 29 | cnvex 5103 |
. . . . . . . . . . . . . 14
⊢ ◡((g
↾ p)
∘ ◡f) ∈ V |
31 | 30 | f1oen 6034 |
. . . . . . . . . . . . 13
⊢ (◡((g
↾ p)
∘ ◡f):(g “
p)–1-1-onto→y →
(g “ p) ≈ y) |
32 | 22, 23, 31 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((f:p–1-1-onto→y ∧ g:q–1-1-onto→A ∧ p ⊆ q) →
(g “ p) ≈ y) |
33 | | elnc 6126 |
. . . . . . . . . . . 12
⊢ ((g “ p)
∈ Nc y ↔ (g
“ p) ≈ y) |
34 | 32, 33 | sylibr 203 |
. . . . . . . . . . 11
⊢ ((f:p–1-1-onto→y ∧ g:q–1-1-onto→A ∧ p ⊆ q) →
(g “ p) ∈ Nc y) |
35 | | imass2 5025 |
. . . . . . . . . . . . 13
⊢ (p ⊆ q → (g
“ p) ⊆ (g “
q)) |
36 | 35 | 3ad2ant3 978 |
. . . . . . . . . . . 12
⊢ ((f:p–1-1-onto→y ∧ g:q–1-1-onto→A ∧ p ⊆ q) →
(g “ p) ⊆ (g “ q)) |
37 | | f1ofo 5294 |
. . . . . . . . . . . . . 14
⊢ (g:q–1-1-onto→A →
g:q–onto→A) |
38 | | foima 5275 |
. . . . . . . . . . . . . 14
⊢ (g:q–onto→A
→ (g “ q) = A) |
39 | 37, 38 | syl 15 |
. . . . . . . . . . . . 13
⊢ (g:q–1-1-onto→A →
(g “ q) = A) |
40 | 39 | 3ad2ant2 977 |
. . . . . . . . . . . 12
⊢ ((f:p–1-1-onto→y ∧ g:q–1-1-onto→A ∧ p ⊆ q) →
(g “ q) = A) |
41 | 36, 40 | sseqtrd 3308 |
. . . . . . . . . . 11
⊢ ((f:p–1-1-onto→y ∧ g:q–1-1-onto→A ∧ p ⊆ q) →
(g “ p) ⊆ A) |
42 | | sseq1 3293 |
. . . . . . . . . . . 12
⊢ (x = (g “
p) → (x ⊆ A ↔ (g
“ p) ⊆ A)) |
43 | 42 | rspcev 2956 |
. . . . . . . . . . 11
⊢ (((g “ p)
∈ Nc y ∧ (g “ p)
⊆ A)
→ ∃x ∈ Nc yx ⊆ A) |
44 | 34, 41, 43 | syl2anc 642 |
. . . . . . . . . 10
⊢ ((f:p–1-1-onto→y ∧ g:q–1-1-onto→A ∧ p ⊆ q) →
∃x ∈ Nc yx ⊆ A) |
45 | 44 | 3expia 1153 |
. . . . . . . . 9
⊢ ((f:p–1-1-onto→y ∧ g:q–1-1-onto→A) →
(p ⊆
q → ∃x ∈ Nc yx ⊆ A)) |
46 | 45 | exlimivv 1635 |
. . . . . . . 8
⊢ (∃f∃g(f:p–1-1-onto→y ∧ g:q–1-1-onto→A) →
(p ⊆
q → ∃x ∈ Nc yx ⊆ A)) |
47 | 13, 46 | sylbi 187 |
. . . . . . 7
⊢ ((p ∈ Nc y ∧ q ∈ Nc A) → (p
⊆ q
→ ∃x ∈ Nc yx ⊆ A)) |
48 | 47 | rexlimivv 2744 |
. . . . . 6
⊢ (∃p ∈ Nc y∃q ∈ Nc Ap ⊆ q → ∃x ∈ Nc yx ⊆ A) |
49 | 4, 48 | sylbi 187 |
. . . . 5
⊢ ( Nc y
≤c Nc A → ∃x ∈ Nc yx ⊆ A) |
50 | | vex 2863 |
. . . . . . . 8
⊢ x ∈
V |
51 | | lenc.1 |
. . . . . . . 8
⊢ A ∈
V |
52 | 50, 51 | nclec 6196 |
. . . . . . 7
⊢ (x ⊆ A → Nc x ≤c Nc
A) |
53 | 50 | eqnc 6128 |
. . . . . . . . 9
⊢ ( Nc x = Nc y ↔ x ≈ y) |
54 | | elnc 6126 |
. . . . . . . . 9
⊢ (x ∈ Nc y ↔ x ≈ y) |
55 | 53, 54 | bitr4i 243 |
. . . . . . . 8
⊢ ( Nc x = Nc y ↔ x ∈ Nc y) |
56 | | breq1 4643 |
. . . . . . . 8
⊢ ( Nc x = Nc y → ( Nc x
≤c Nc A ↔ Nc y ≤c Nc
A)) |
57 | 55, 56 | sylbir 204 |
. . . . . . 7
⊢ (x ∈ Nc y → ( Nc x
≤c Nc A ↔ Nc y ≤c Nc
A)) |
58 | 52, 57 | syl5ib 210 |
. . . . . 6
⊢ (x ∈ Nc y →
(x ⊆
A → Nc
y ≤c Nc A)) |
59 | 58 | rexlimiv 2733 |
. . . . 5
⊢ (∃x ∈ Nc yx ⊆ A →
Nc y
≤c Nc A) |
60 | 49, 59 | impbii 180 |
. . . 4
⊢ ( Nc y
≤c Nc A ↔ ∃x ∈ Nc yx ⊆ A) |
61 | | breq1 4643 |
. . . . 5
⊢ (M = Nc y → (M
≤c Nc A ↔ Nc y ≤c Nc
A)) |
62 | | rexeq 2809 |
. . . . 5
⊢ (M = Nc y → (∃x ∈ M x ⊆ A ↔ ∃x ∈ Nc yx ⊆ A)) |
63 | 61, 62 | bibi12d 312 |
. . . 4
⊢ (M = Nc y → ((M
≤c Nc A ↔ ∃x ∈ M x ⊆ A) ↔ ( Nc y ≤c Nc
A ↔ ∃x ∈ Nc yx ⊆ A))) |
64 | 60, 63 | mpbiri 224 |
. . 3
⊢ (M = Nc y → (M
≤c Nc A ↔ ∃x ∈ M x ⊆ A)) |
65 | 64 | exlimiv 1634 |
. 2
⊢ (∃y M = Nc y → (M
≤c Nc A ↔ ∃x ∈ M x ⊆ A)) |
66 | 1, 65 | sylbi 187 |
1
⊢ (M ∈ NC → (M
≤c Nc A ↔ ∃x ∈ M x ⊆ A)) |