New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > snel1cg | GIF version |
Description: A singleton is an element of cardinal one. (Contributed by SF, 30-Jan-2015.) |
Ref | Expression |
---|---|
snel1cg | ⊢ (A ∈ V → {A} ∈ 1c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3745 | . . 3 ⊢ (x = A → {x} = {A}) | |
2 | 1 | eleq1d 2419 | . 2 ⊢ (x = A → ({x} ∈ 1c ↔ {A} ∈ 1c)) |
3 | vex 2863 | . . 3 ⊢ x ∈ V | |
4 | 3 | snel1c 4141 | . 2 ⊢ {x} ∈ 1c |
5 | 2, 4 | vtoclg 2915 | 1 ⊢ (A ∈ V → {A} ∈ 1c) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 {csn 3738 1cc1c 4135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-1c 4137 |
This theorem is referenced by: snfi 4432 ncfinsn 4477 nchoicelem13 6302 |
Copyright terms: Public domain | W3C validator |