NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  snel1c GIF version

Theorem snel1c 4141
Description: A singleton is an element of cardinal one. (Contributed by SF, 13-Jan-2015.)
Hypothesis
Ref Expression
snel1c.1 A V
Assertion
Ref Expression
snel1c {A} 1c

Proof of Theorem snel1c
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 eqid 2353 . . 3 {A} = {A}
2 snel1c.1 . . . 4 A V
3 sneq 3745 . . . . 5 (x = A → {x} = {A})
43eqeq2d 2364 . . . 4 (x = A → ({A} = {x} ↔ {A} = {A}))
52, 4spcev 2947 . . 3 ({A} = {A} → x{A} = {x})
61, 5ax-mp 5 . 2 x{A} = {x}
7 el1c 4140 . 2 ({A} 1cx{A} = {x})
86, 7mpbir 200 1 {A} 1c
Colors of variables: wff setvar class
Syntax hints:  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  {csn 3738  1cc1c 4135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-1c 4137
This theorem is referenced by:  snel1cg  4142  sikss1c1c  4268  ins2kss  4280  ins3kss  4281  sikexg  4297  ins2kexg  4306  ins3kexg  4307  tfin1c  4500  nnpweq  4524  sfin01  4529  pw1fnval  5852  brpw1fn  5855  df1c3  6141  tc1c  6166  ce0nn  6181  nc0le1  6217  brtcfn  6247
  Copyright terms: Public domain W3C validator