New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > snel1c | GIF version |
Description: A singleton is an element of cardinal one. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
snel1c.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
snel1c | ⊢ {A} ∈ 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2353 | . . 3 ⊢ {A} = {A} | |
2 | snel1c.1 | . . . 4 ⊢ A ∈ V | |
3 | sneq 3745 | . . . . 5 ⊢ (x = A → {x} = {A}) | |
4 | 3 | eqeq2d 2364 | . . . 4 ⊢ (x = A → ({A} = {x} ↔ {A} = {A})) |
5 | 2, 4 | spcev 2947 | . . 3 ⊢ ({A} = {A} → ∃x{A} = {x}) |
6 | 1, 5 | ax-mp 5 | . 2 ⊢ ∃x{A} = {x} |
7 | el1c 4140 | . 2 ⊢ ({A} ∈ 1c ↔ ∃x{A} = {x}) | |
8 | 6, 7 | mpbir 200 | 1 ⊢ {A} ∈ 1c |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 {csn 3738 1cc1c 4135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-1c 4137 |
This theorem is referenced by: snel1cg 4142 sikss1c1c 4268 ins2kss 4280 ins3kss 4281 sikexg 4297 ins2kexg 4306 ins3kexg 4307 tfin1c 4500 nnpweq 4524 sfin01 4529 pw1fnval 5852 brpw1fn 5855 df1c3 6141 tc1c 6166 ce0nn 6181 nc0le1 6217 brtcfn 6247 |
Copyright terms: Public domain | W3C validator |