NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  snfi GIF version

Theorem snfi 4432
Description: A singleton is finite. (Contributed by SF, 23-Feb-2015.)
Assertion
Ref Expression
snfi {A} Fin

Proof of Theorem snfi
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 1cnnc 4409 . . . 4 1c Nn
2 snel1cg 4142 . . . 4 (A V → {A} 1c)
3 eleq2 2414 . . . . 5 (x = 1c → ({A} x ↔ {A} 1c))
43rspcev 2956 . . . 4 ((1c Nn {A} 1c) → x Nn {A} x)
51, 2, 4sylancr 644 . . 3 (A V → x Nn {A} x)
6 elfin 4421 . . 3 ({A} Finx Nn {A} x)
75, 6sylibr 203 . 2 (A V → {A} Fin )
8 snprc 3789 . . 3 A V ↔ {A} = )
9 0fin 4424 . . . 4 Fin
10 eleq1 2413 . . . 4 ({A} = → ({A} Fin Fin ))
119, 10mpbiri 224 . . 3 ({A} = → {A} Fin )
128, 11sylbi 187 . 2 A V → {A} Fin )
137, 12pm2.61i 156 1 {A} Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860  c0 3551  {csn 3738  1cc1c 4135   Nn cnnc 4374   Fin cfin 4377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-p6 4192  df-sik 4193  df-ssetk 4194  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381
This theorem is referenced by:  nchoicelem19  6308
  Copyright terms: Public domain W3C validator