New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > snfi | GIF version |
Description: A singleton is finite. (Contributed by SF, 23-Feb-2015.) |
Ref | Expression |
---|---|
snfi | ⊢ {A} ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnnc 4409 | . . . 4 ⊢ 1c ∈ Nn | |
2 | snel1cg 4142 | . . . 4 ⊢ (A ∈ V → {A} ∈ 1c) | |
3 | eleq2 2414 | . . . . 5 ⊢ (x = 1c → ({A} ∈ x ↔ {A} ∈ 1c)) | |
4 | 3 | rspcev 2956 | . . . 4 ⊢ ((1c ∈ Nn ∧ {A} ∈ 1c) → ∃x ∈ Nn {A} ∈ x) |
5 | 1, 2, 4 | sylancr 644 | . . 3 ⊢ (A ∈ V → ∃x ∈ Nn {A} ∈ x) |
6 | elfin 4421 | . . 3 ⊢ ({A} ∈ Fin ↔ ∃x ∈ Nn {A} ∈ x) | |
7 | 5, 6 | sylibr 203 | . 2 ⊢ (A ∈ V → {A} ∈ Fin ) |
8 | snprc 3789 | . . 3 ⊢ (¬ A ∈ V ↔ {A} = ∅) | |
9 | 0fin 4424 | . . . 4 ⊢ ∅ ∈ Fin | |
10 | eleq1 2413 | . . . 4 ⊢ ({A} = ∅ → ({A} ∈ Fin ↔ ∅ ∈ Fin )) | |
11 | 9, 10 | mpbiri 224 | . . 3 ⊢ ({A} = ∅ → {A} ∈ Fin ) |
12 | 8, 11 | sylbi 187 | . 2 ⊢ (¬ A ∈ V → {A} ∈ Fin ) |
13 | 7, 12 | pm2.61i 156 | 1 ⊢ {A} ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 Vcvv 2860 ∅c0 3551 {csn 3738 1cc1c 4135 Nn cnnc 4374 Fin cfin 4377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 |
This theorem is referenced by: nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |