NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ncfinsn GIF version

Theorem ncfinsn 4477
Description: If the universe is finite, then the cardinality of a singleton is 1c. (Contributed by SF, 30-Jan-2015.)
Assertion
Ref Expression
ncfinsn ((V Fin A V) → Ncfin {A} = 1c)

Proof of Theorem ncfinsn
StepHypRef Expression
1 snex 4112 . . . . 5 {A} V
2 ncfinprop 4475 . . . . 5 ((V Fin {A} V) → ( Ncfin {A} Nn {A} Ncfin {A}))
31, 2mpan2 652 . . . 4 (V Fin → ( Ncfin {A} Nn {A} Ncfin {A}))
43adantr 451 . . 3 ((V Fin A V) → ( Ncfin {A} Nn {A} Ncfin {A}))
54simpld 445 . 2 ((V Fin A V) → Ncfin {A} Nn )
6 1cnnc 4409 . . 3 1c Nn
76a1i 10 . 2 ((V Fin A V) → 1c Nn )
84simprd 449 . 2 ((V Fin A V) → {A} Ncfin {A})
9 snel1cg 4142 . . 3 (A V → {A} 1c)
109adantl 452 . 2 ((V Fin A V) → {A} 1c)
11 nnceleq 4431 . 2 ((( Ncfin {A} Nn 1c Nn ) ({A} Ncfin {A} {A} 1c)) → Ncfin {A} = 1c)
125, 7, 8, 10, 11syl22anc 1183 1 ((V Fin A V) → Ncfin {A} = 1c)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  Vcvv 2860  {csn 3738  1cc1c 4135   Nn cnnc 4374   Fin cfin 4377   Ncfin cncfin 4435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-ncfin 4443
This theorem is referenced by:  vfinncsp  4555
  Copyright terms: Public domain W3C validator