New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ncfinsn | GIF version |
Description: If the universe is finite, then the cardinality of a singleton is 1c. (Contributed by SF, 30-Jan-2015.) |
Ref | Expression |
---|---|
ncfinsn | ⊢ ((V ∈ Fin ∧ A ∈ V) → Ncfin {A} = 1c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 4112 | . . . . 5 ⊢ {A} ∈ V | |
2 | ncfinprop 4475 | . . . . 5 ⊢ ((V ∈ Fin ∧ {A} ∈ V) → ( Ncfin {A} ∈ Nn ∧ {A} ∈ Ncfin {A})) | |
3 | 1, 2 | mpan2 652 | . . . 4 ⊢ (V ∈ Fin → ( Ncfin {A} ∈ Nn ∧ {A} ∈ Ncfin {A})) |
4 | 3 | adantr 451 | . . 3 ⊢ ((V ∈ Fin ∧ A ∈ V) → ( Ncfin {A} ∈ Nn ∧ {A} ∈ Ncfin {A})) |
5 | 4 | simpld 445 | . 2 ⊢ ((V ∈ Fin ∧ A ∈ V) → Ncfin {A} ∈ Nn ) |
6 | 1cnnc 4409 | . . 3 ⊢ 1c ∈ Nn | |
7 | 6 | a1i 10 | . 2 ⊢ ((V ∈ Fin ∧ A ∈ V) → 1c ∈ Nn ) |
8 | 4 | simprd 449 | . 2 ⊢ ((V ∈ Fin ∧ A ∈ V) → {A} ∈ Ncfin {A}) |
9 | snel1cg 4142 | . . 3 ⊢ (A ∈ V → {A} ∈ 1c) | |
10 | 9 | adantl 452 | . 2 ⊢ ((V ∈ Fin ∧ A ∈ V) → {A} ∈ 1c) |
11 | nnceleq 4431 | . 2 ⊢ ((( Ncfin {A} ∈ Nn ∧ 1c ∈ Nn ) ∧ ({A} ∈ Ncfin {A} ∧ {A} ∈ 1c)) → Ncfin {A} = 1c) | |
12 | 5, 7, 8, 10, 11 | syl22anc 1183 | 1 ⊢ ((V ∈ Fin ∧ A ∈ V) → Ncfin {A} = 1c) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 {csn 3738 1cc1c 4135 Nn cnnc 4374 Fin cfin 4377 Ncfin cncfin 4435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-ncfin 4443 |
This theorem is referenced by: vfinncsp 4555 |
Copyright terms: Public domain | W3C validator |