ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovord2d GIF version

Theorem caovord2d 5670
Description: Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovordg.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
caovordd.2 (𝜑𝐴𝑆)
caovordd.3 (𝜑𝐵𝑆)
caovordd.4 (𝜑𝐶𝑆)
caovord2d.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
Assertion
Ref Expression
caovord2d (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovord2d
StepHypRef Expression
1 caovordg.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
2 caovordd.2 . . 3 (𝜑𝐴𝑆)
3 caovordd.3 . . 3 (𝜑𝐵𝑆)
4 caovordd.4 . . 3 (𝜑𝐶𝑆)
51, 2, 3, 4caovordd 5669 . 2 (𝜑 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
6 caovord2d.com . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
76, 4, 2caovcomd 5657 . . 3 (𝜑 → (𝐶𝐹𝐴) = (𝐴𝐹𝐶))
86, 4, 3caovcomd 5657 . . 3 (𝜑 → (𝐶𝐹𝐵) = (𝐵𝐹𝐶))
97, 8breq12d 3777 . 2 (𝜑 → ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
105, 9bitrd 177 1 (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393   class class class wbr 3764  (class class class)co 5512
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515
This theorem is referenced by:  caovord3d  5671  genplt2i  6606  addnqprllem  6623  addnqprulem  6624  mulnqprl  6664  mulnqpru  6665  distrlem4prl  6680  distrlem4pru  6681  1idprl  6686  1idpru  6687  ltexprlemdisj  6702  ltexprlemloc  6703  ltexprlemfl  6705  ltexprlemfu  6707  prplnqu  6716  recexprlem1ssl  6729  recexprlem1ssu  6730  aptiprleml  6735  aptiprlemu  6736  caucvgprlemcanl  6740  cauappcvgprlemlol  6743  cauappcvgprlemloc  6748  cauappcvgprlemladdfu  6750  cauappcvgprlemladdru  6752  cauappcvgprlemladdrl  6753  cauappcvgprlem1  6755  caucvgprlemnkj  6762  caucvgprlemnbj  6763  caucvgprlemlol  6766  caucvgprlemloc  6771  caucvgprlemladdfu  6773  caucvgprlemladdrl  6774  caucvgprprlemnkltj  6785  caucvgprprlemnbj  6789  caucvgprprlemmu  6791  caucvgprprlemlol  6794  caucvgprprlemloc  6799  caucvgprprlemexbt  6802  caucvgprprlemexb  6803  caucvgprprlemaddq  6804  lttrsr  6845  ltsosr  6847  prsrlt  6869  caucvgsrlemoffcau  6880  caucvgsrlemoffgt1  6881  caucvgsrlemoffres  6882  caucvgsr  6884
  Copyright terms: Public domain W3C validator