ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch2 GIF version

Theorem prarloclemarch2 6723
Description: Like prarloclemarch 6722 but the integer must be at least two, and there is also 𝐵 added to the right hand side. These details follow straightforwardly but are chosen to be helpful in the proof of prarloc 6807. (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
prarloclemarch2 ((𝐴Q𝐵Q𝐶Q) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem prarloclemarch2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prarloclemarch 6722 . . 3 ((𝐴Q𝐶Q) → ∃𝑧N 𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))
213adant2 958 . 2 ((𝐴Q𝐵Q𝐶Q) → ∃𝑧N 𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))
3 pinn 6613 . . . . . . . 8 (𝑧N𝑧 ∈ ω)
4 1pi 6619 . . . . . . . . . . . 12 1𝑜N
54elexi 2620 . . . . . . . . . . 11 1𝑜 ∈ V
65sucid 4200 . . . . . . . . . 10 1𝑜 ∈ suc 1𝑜
7 df-2o 6086 . . . . . . . . . 10 2𝑜 = suc 1𝑜
86, 7eleqtrri 2158 . . . . . . . . 9 1𝑜 ∈ 2𝑜
9 2onn 6181 . . . . . . . . . . 11 2𝑜 ∈ ω
10 nnaword2 6174 . . . . . . . . . . 11 ((2𝑜 ∈ ω ∧ 𝑧 ∈ ω) → 2𝑜 ⊆ (𝑧 +𝑜 2𝑜))
119, 10mpan 415 . . . . . . . . . 10 (𝑧 ∈ ω → 2𝑜 ⊆ (𝑧 +𝑜 2𝑜))
1211sseld 3007 . . . . . . . . 9 (𝑧 ∈ ω → (1𝑜 ∈ 2𝑜 → 1𝑜 ∈ (𝑧 +𝑜 2𝑜)))
138, 12mpi 15 . . . . . . . 8 (𝑧 ∈ ω → 1𝑜 ∈ (𝑧 +𝑜 2𝑜))
143, 13syl 14 . . . . . . 7 (𝑧N → 1𝑜 ∈ (𝑧 +𝑜 2𝑜))
15 o1p1e2 6132 . . . . . . . . 9 (1𝑜 +𝑜 1𝑜) = 2𝑜
16 addpiord 6620 . . . . . . . . . . 11 ((1𝑜N ∧ 1𝑜N) → (1𝑜 +N 1𝑜) = (1𝑜 +𝑜 1𝑜))
174, 4, 16mp2an 417 . . . . . . . . . 10 (1𝑜 +N 1𝑜) = (1𝑜 +𝑜 1𝑜)
18 addclpi 6631 . . . . . . . . . . 11 ((1𝑜N ∧ 1𝑜N) → (1𝑜 +N 1𝑜) ∈ N)
194, 4, 18mp2an 417 . . . . . . . . . 10 (1𝑜 +N 1𝑜) ∈ N
2017, 19eqeltrri 2156 . . . . . . . . 9 (1𝑜 +𝑜 1𝑜) ∈ N
2115, 20eqeltrri 2156 . . . . . . . 8 2𝑜N
22 addpiord 6620 . . . . . . . 8 ((𝑧N ∧ 2𝑜N) → (𝑧 +N 2𝑜) = (𝑧 +𝑜 2𝑜))
2321, 22mpan2 416 . . . . . . 7 (𝑧N → (𝑧 +N 2𝑜) = (𝑧 +𝑜 2𝑜))
2414, 23eleqtrrd 2162 . . . . . 6 (𝑧N → 1𝑜 ∈ (𝑧 +N 2𝑜))
25 addclpi 6631 . . . . . . . 8 ((𝑧N ∧ 2𝑜N) → (𝑧 +N 2𝑜) ∈ N)
2621, 25mpan2 416 . . . . . . 7 (𝑧N → (𝑧 +N 2𝑜) ∈ N)
27 ltpiord 6623 . . . . . . . 8 ((1𝑜N ∧ (𝑧 +N 2𝑜) ∈ N) → (1𝑜 <N (𝑧 +N 2𝑜) ↔ 1𝑜 ∈ (𝑧 +N 2𝑜)))
284, 27mpan 415 . . . . . . 7 ((𝑧 +N 2𝑜) ∈ N → (1𝑜 <N (𝑧 +N 2𝑜) ↔ 1𝑜 ∈ (𝑧 +N 2𝑜)))
2926, 28syl 14 . . . . . 6 (𝑧N → (1𝑜 <N (𝑧 +N 2𝑜) ↔ 1𝑜 ∈ (𝑧 +N 2𝑜)))
3024, 29mpbird 165 . . . . 5 (𝑧N → 1𝑜 <N (𝑧 +N 2𝑜))
3130adantl 271 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → 1𝑜 <N (𝑧 +N 2𝑜))
3231adantrr 463 . . 3 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → 1𝑜 <N (𝑧 +N 2𝑜))
33 nna0 6138 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ω → (𝑧 +𝑜 ∅) = 𝑧)
34 0lt1o 6107 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ 1𝑜
35 1on 6092 . . . . . . . . . . . . . . . . . . . . . 22 1𝑜 ∈ On
3635onsuci 4288 . . . . . . . . . . . . . . . . . . . . 21 suc 1𝑜 ∈ On
37 ontr1 4172 . . . . . . . . . . . . . . . . . . . . 21 (suc 1𝑜 ∈ On → ((∅ ∈ 1𝑜 ∧ 1𝑜 ∈ suc 1𝑜) → ∅ ∈ suc 1𝑜))
3836, 37ax-mp 7 . . . . . . . . . . . . . . . . . . . 20 ((∅ ∈ 1𝑜 ∧ 1𝑜 ∈ suc 1𝑜) → ∅ ∈ suc 1𝑜)
3934, 6, 38mp2an 417 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ suc 1𝑜
4039, 7eleqtrri 2158 . . . . . . . . . . . . . . . . . 18 ∅ ∈ 2𝑜
41 nnaordi 6168 . . . . . . . . . . . . . . . . . . 19 ((2𝑜 ∈ ω ∧ 𝑧 ∈ ω) → (∅ ∈ 2𝑜 → (𝑧 +𝑜 ∅) ∈ (𝑧 +𝑜 2𝑜)))
429, 41mpan 415 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ω → (∅ ∈ 2𝑜 → (𝑧 +𝑜 ∅) ∈ (𝑧 +𝑜 2𝑜)))
4340, 42mpi 15 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ω → (𝑧 +𝑜 ∅) ∈ (𝑧 +𝑜 2𝑜))
4433, 43eqeltrrd 2160 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ω → 𝑧 ∈ (𝑧 +𝑜 2𝑜))
453, 44syl 14 . . . . . . . . . . . . . . 15 (𝑧N𝑧 ∈ (𝑧 +𝑜 2𝑜))
4645, 23eleqtrrd 2162 . . . . . . . . . . . . . 14 (𝑧N𝑧 ∈ (𝑧 +N 2𝑜))
47 ltpiord 6623 . . . . . . . . . . . . . . 15 ((𝑧N ∧ (𝑧 +N 2𝑜) ∈ N) → (𝑧 <N (𝑧 +N 2𝑜) ↔ 𝑧 ∈ (𝑧 +N 2𝑜)))
4826, 47mpdan 412 . . . . . . . . . . . . . 14 (𝑧N → (𝑧 <N (𝑧 +N 2𝑜) ↔ 𝑧 ∈ (𝑧 +N 2𝑜)))
4946, 48mpbird 165 . . . . . . . . . . . . 13 (𝑧N𝑧 <N (𝑧 +N 2𝑜))
50 mulidpi 6622 . . . . . . . . . . . . 13 (𝑧N → (𝑧 ·N 1𝑜) = 𝑧)
51 mulcompig 6635 . . . . . . . . . . . . . . . 16 (((𝑧 +N 2𝑜) ∈ N ∧ 1𝑜N) → ((𝑧 +N 2𝑜) ·N 1𝑜) = (1𝑜 ·N (𝑧 +N 2𝑜)))
524, 51mpan2 416 . . . . . . . . . . . . . . 15 ((𝑧 +N 2𝑜) ∈ N → ((𝑧 +N 2𝑜) ·N 1𝑜) = (1𝑜 ·N (𝑧 +N 2𝑜)))
5326, 52syl 14 . . . . . . . . . . . . . 14 (𝑧N → ((𝑧 +N 2𝑜) ·N 1𝑜) = (1𝑜 ·N (𝑧 +N 2𝑜)))
54 mulidpi 6622 . . . . . . . . . . . . . . 15 ((𝑧 +N 2𝑜) ∈ N → ((𝑧 +N 2𝑜) ·N 1𝑜) = (𝑧 +N 2𝑜))
5526, 54syl 14 . . . . . . . . . . . . . 14 (𝑧N → ((𝑧 +N 2𝑜) ·N 1𝑜) = (𝑧 +N 2𝑜))
5653, 55eqtr3d 2117 . . . . . . . . . . . . 13 (𝑧N → (1𝑜 ·N (𝑧 +N 2𝑜)) = (𝑧 +N 2𝑜))
5749, 50, 563brtr4d 3835 . . . . . . . . . . . 12 (𝑧N → (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜)))
58 ordpipqqs 6678 . . . . . . . . . . . . . . 15 (((𝑧N ∧ 1𝑜N) ∧ ((𝑧 +N 2𝑜) ∈ N ∧ 1𝑜N)) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜))))
594, 58mpanl2 426 . . . . . . . . . . . . . 14 ((𝑧N ∧ ((𝑧 +N 2𝑜) ∈ N ∧ 1𝑜N)) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜))))
604, 59mpanr2 429 . . . . . . . . . . . . 13 ((𝑧N ∧ (𝑧 +N 2𝑜) ∈ N) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜))))
6126, 60mpdan 412 . . . . . . . . . . . 12 (𝑧N → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜))))
6257, 61mpbird 165 . . . . . . . . . . 11 (𝑧N → [⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )
6362adantl 271 . . . . . . . . . 10 ((𝐶Q𝑧N) → [⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )
64 opelxpi 4422 . . . . . . . . . . . . . . . 16 (((𝑧 +N 2𝑜) ∈ N ∧ 1𝑜N) → ⟨(𝑧 +N 2𝑜), 1𝑜⟩ ∈ (N × N))
654, 64mpan2 416 . . . . . . . . . . . . . . 15 ((𝑧 +N 2𝑜) ∈ N → ⟨(𝑧 +N 2𝑜), 1𝑜⟩ ∈ (N × N))
66 enqex 6664 . . . . . . . . . . . . . . . 16 ~Q ∈ V
6766ecelqsi 6247 . . . . . . . . . . . . . . 15 (⟨(𝑧 +N 2𝑜), 1𝑜⟩ ∈ (N × N) → [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
6826, 65, 673syl 17 . . . . . . . . . . . . . 14 (𝑧N → [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
69 df-nqqs 6652 . . . . . . . . . . . . . 14 Q = ((N × N) / ~Q )
7068, 69syl6eleqr 2176 . . . . . . . . . . . . 13 (𝑧N → [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ)
71 opelxpi 4422 . . . . . . . . . . . . . . . . 17 ((𝑧N ∧ 1𝑜N) → ⟨𝑧, 1𝑜⟩ ∈ (N × N))
724, 71mpan2 416 . . . . . . . . . . . . . . . 16 (𝑧N → ⟨𝑧, 1𝑜⟩ ∈ (N × N))
7366ecelqsi 6247 . . . . . . . . . . . . . . . 16 (⟨𝑧, 1𝑜⟩ ∈ (N × N) → [⟨𝑧, 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
7472, 73syl 14 . . . . . . . . . . . . . . 15 (𝑧N → [⟨𝑧, 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
7574, 69syl6eleqr 2176 . . . . . . . . . . . . . 14 (𝑧N → [⟨𝑧, 1𝑜⟩] ~QQ)
76 ltmnqg 6705 . . . . . . . . . . . . . 14 (([⟨𝑧, 1𝑜⟩] ~QQ ∧ [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ𝐶Q) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
7775, 76syl3an1 1203 . . . . . . . . . . . . 13 ((𝑧N ∧ [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ𝐶Q) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
7870, 77syl3an2 1204 . . . . . . . . . . . 12 ((𝑧N𝑧N𝐶Q) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
79783anidm12 1227 . . . . . . . . . . 11 ((𝑧N𝐶Q) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
8079ancoms 264 . . . . . . . . . 10 ((𝐶Q𝑧N) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
8163, 80mpbid 145 . . . . . . . . 9 ((𝐶Q𝑧N) → (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ))
82 mulcomnqg 6687 . . . . . . . . . 10 ((𝐶Q ∧ [⟨𝑧, 1𝑜⟩] ~QQ) → (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) = ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))
8375, 82sylan2 280 . . . . . . . . 9 ((𝐶Q𝑧N) → (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) = ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))
84 mulcomnqg 6687 . . . . . . . . . 10 ((𝐶Q ∧ [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ) → (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ) = ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
8570, 84sylan2 280 . . . . . . . . 9 ((𝐶Q𝑧N) → (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ) = ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
8681, 83, 853brtr3d 3834 . . . . . . . 8 ((𝐶Q𝑧N) → ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
87863ad2antl3 1103 . . . . . . 7 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
8887adantrr 463 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
89 ltsonq 6702 . . . . . . . . . 10 <Q Or Q
90 ltrelnq 6669 . . . . . . . . . 10 <Q ⊆ (Q × Q)
9189, 90sotri 4770 . . . . . . . . 9 ((𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) ∧ ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
9291ex 113 . . . . . . . 8 (𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) → (([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
9392adantl 271 . . . . . . 7 ((𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶)) → (([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
9493adantl 271 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → (([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
9588, 94mpd 13 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
96 mulclnq 6680 . . . . . . . . . 10 (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ𝐶Q) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q)
9770, 96sylan 277 . . . . . . . . 9 ((𝑧N𝐶Q) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q)
9897ancoms 264 . . . . . . . 8 ((𝐶Q𝑧N) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q)
99983ad2antl3 1103 . . . . . . 7 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q)
100 simpl2 943 . . . . . . 7 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → 𝐵Q)
101 ltaddnq 6711 . . . . . . 7 ((([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q𝐵Q) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
10299, 100, 101syl2anc 403 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
103102adantrr 463 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
10489, 90sotri 4770 . . . . 5 ((𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∧ ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵)) → 𝐴 <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
10595, 103, 104syl2anc 403 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → 𝐴 <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
106 addcomnqg 6685 . . . . . . 7 ((([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q𝐵Q) → (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵) = (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
10799, 100, 106syl2anc 403 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵) = (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
108107breq2d 3817 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → (𝐴 <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵) ↔ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))))
109108adantrr 463 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → (𝐴 <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵) ↔ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))))
110105, 109mpbid 145 . . 3 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
111 simpr 108 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → 𝑧N)
112 breq2 3809 . . . . . . . 8 (𝑥 = (𝑧 +N 2𝑜) → (1𝑜 <N 𝑥 ↔ 1𝑜 <N (𝑧 +N 2𝑜)))
113 opeq1 3590 . . . . . . . . . . . 12 (𝑥 = (𝑧 +N 2𝑜) → ⟨𝑥, 1𝑜⟩ = ⟨(𝑧 +N 2𝑜), 1𝑜⟩)
114113eceq1d 6229 . . . . . . . . . . 11 (𝑥 = (𝑧 +N 2𝑜) → [⟨𝑥, 1𝑜⟩] ~Q = [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )
115114oveq1d 5578 . . . . . . . . . 10 (𝑥 = (𝑧 +N 2𝑜) → ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶) = ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
116115oveq2d 5579 . . . . . . . . 9 (𝑥 = (𝑧 +N 2𝑜) → (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)) = (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
117116breq2d 3817 . . . . . . . 8 (𝑥 = (𝑧 +N 2𝑜) → (𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)) ↔ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))))
118112, 117anbi12d 457 . . . . . . 7 (𝑥 = (𝑧 +N 2𝑜) → ((1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))) ↔ (1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))))
119118rspcev 2710 . . . . . 6 (((𝑧 +N 2𝑜) ∈ N ∧ (1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))))
120119ex 113 . . . . 5 ((𝑧 +N 2𝑜) ∈ N → ((1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)))))
121111, 26, 1203syl 17 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ((1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)))))
122121adantrr 463 . . 3 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → ((1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)))))
12332, 110, 122mp2and 424 . 2 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))))
1242, 123rexlimddv 2486 1 ((𝐴Q𝐵Q𝐶Q) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  wrex 2354  wss 2982  c0 3267  cop 3419   class class class wbr 3805  Oncon0 4146  suc csuc 4148  ωcom 4359   × cxp 4389  (class class class)co 5563  1𝑜c1o 6078  2𝑜c2o 6079   +𝑜 coa 6082  [cec 6191   / cqs 6192  Ncnpi 6576   +N cpli 6577   ·N cmi 6578   <N clti 6579   ~Q ceq 6583  Qcnq 6584   +Q cplq 6586   ·Q cmq 6587   <Q cltq 6589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-eprel 4072  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-irdg 6039  df-1o 6085  df-2o 6086  df-oadd 6089  df-omul 6090  df-er 6193  df-ec 6195  df-qs 6199  df-ni 6608  df-pli 6609  df-mi 6610  df-lti 6611  df-plpq 6648  df-mpq 6649  df-enq 6651  df-nqqs 6652  df-plqqs 6653  df-mqqs 6654  df-1nqqs 6655  df-rq 6656  df-ltnqqs 6657
This theorem is referenced by:  prarloc  6807
  Copyright terms: Public domain W3C validator