MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3cshw Structured version   Visualization version   GIF version

Theorem 3cshw 13358
Description: Cyclically shifting a word three times results in a once cyclically shifted word under certain circumstances. (Contributed by AV, 6-Jun-2018.) (Revised by AV, 1-Nov-2018.)
Assertion
Ref Expression
3cshw ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (((𝑊 cyclShift 𝑀) cyclShift 𝑁) cyclShift ((#‘𝑊) − 𝑀)))

Proof of Theorem 3cshw
StepHypRef Expression
1 2cshwid 13354 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift ((#‘𝑊) − 𝑀)) = 𝑊)
213adant2 1072 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift ((#‘𝑊) − 𝑀)) = 𝑊)
32eqcomd 2612 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑊 = ((𝑊 cyclShift 𝑀) cyclShift ((#‘𝑊) − 𝑀)))
43oveq1d 6539 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (((𝑊 cyclShift 𝑀) cyclShift ((#‘𝑊) − 𝑀)) cyclShift 𝑁))
5 cshwcl 13338 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
653ad2ant1 1074 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉)
7 lencl 13122 . . . . . 6 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℕ0)
87nn0zd 11309 . . . . 5 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℤ)
9 zsubcl 11249 . . . . 5 (((#‘𝑊) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((#‘𝑊) − 𝑀) ∈ ℤ)
108, 9sylan 486 . . . 4 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ) → ((#‘𝑊) − 𝑀) ∈ ℤ)
11103adant2 1072 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((#‘𝑊) − 𝑀) ∈ ℤ)
12 simp2 1054 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑁 ∈ ℤ)
13 2cshwcom 13356 . . 3 (((𝑊 cyclShift 𝑀) ∈ Word 𝑉 ∧ ((#‘𝑊) − 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑊 cyclShift 𝑀) cyclShift ((#‘𝑊) − 𝑀)) cyclShift 𝑁) = (((𝑊 cyclShift 𝑀) cyclShift 𝑁) cyclShift ((#‘𝑊) − 𝑀)))
146, 11, 12, 13syl3anc 1317 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((𝑊 cyclShift 𝑀) cyclShift ((#‘𝑊) − 𝑀)) cyclShift 𝑁) = (((𝑊 cyclShift 𝑀) cyclShift 𝑁) cyclShift ((#‘𝑊) − 𝑀)))
154, 14eqtrd 2640 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (((𝑊 cyclShift 𝑀) cyclShift 𝑁) cyclShift ((#‘𝑊) − 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1030   = wceq 1474  wcel 1976  cfv 5787  (class class class)co 6524  cmin 10114  cz 11207  #chash 12931  Word cword 13089   cyclShift ccsh 13328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-sup 8205  df-inf 8206  df-card 8622  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-n0 11137  df-z 11208  df-uz 11517  df-rp 11662  df-fz 12150  df-fzo 12287  df-fl 12407  df-mod 12483  df-hash 12932  df-word 13097  df-concat 13099  df-substr 13101  df-csh 13329
This theorem is referenced by:  cshweqdif2  13359
  Copyright terms: Public domain W3C validator