Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abrexctf Structured version   Visualization version   GIF version

Theorem abrexctf 29805
Description: An image set of a countable set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypothesis
Ref Expression
mptctf.1 𝑥𝐴
Assertion
Ref Expression
abrexctf (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem abrexctf
StepHypRef Expression
1 eqid 2760 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21rnmpt 5526 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
3 mptctf.1 . . . 4 𝑥𝐴
43mptctf 29804 . . 3 (𝐴 ≼ ω → (𝑥𝐴𝐵) ≼ ω)
5 rnct 9539 . . 3 ((𝑥𝐴𝐵) ≼ ω → ran (𝑥𝐴𝐵) ≼ ω)
64, 5syl 17 . 2 (𝐴 ≼ ω → ran (𝑥𝐴𝐵) ≼ ω)
72, 6syl5eqbrr 4840 1 (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  {cab 2746  wnfc 2889  wrex 3051   class class class wbr 4804  cmpt 4881  ran crn 5267  ωcom 7230  cdom 8119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-ac2 9477
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-oi 8580  df-card 8955  df-acn 8958  df-ac 9129
This theorem is referenced by:  sigaclcuni  30490  measvunilem  30584
  Copyright terms: Public domain W3C validator