![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > absimlere | Structured version Visualization version GIF version |
Description: The absolute value of the imaginary part of a complex number is a lower bound of the distance to any real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
absimlere.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
absimlere.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
absimlere | ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝐵 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absimlere.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | absimlere.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 2 | recnd 10280 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
4 | 1, 3 | subcld 10604 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
5 | absimle 14268 | . . 3 ⊢ ((𝐴 − 𝐵) ∈ ℂ → (abs‘(ℑ‘(𝐴 − 𝐵))) ≤ (abs‘(𝐴 − 𝐵))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (abs‘(ℑ‘(𝐴 − 𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
7 | 1, 3 | imsubd 14176 | . . . 4 ⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) |
8 | 2 | reim0d 14184 | . . . . 5 ⊢ (𝜑 → (ℑ‘𝐵) = 0) |
9 | 8 | oveq2d 6830 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝐴) − (ℑ‘𝐵)) = ((ℑ‘𝐴) − 0)) |
10 | 1 | imcld 14154 | . . . . . 6 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
11 | 10 | recnd 10280 | . . . . 5 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℂ) |
12 | 11 | subid1d 10593 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴)) |
13 | 7, 9, 12 | 3eqtrrd 2799 | . . 3 ⊢ (𝜑 → (ℑ‘𝐴) = (ℑ‘(𝐴 − 𝐵))) |
14 | 13 | fveq2d 6357 | . 2 ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) = (abs‘(ℑ‘(𝐴 − 𝐵)))) |
15 | 3, 1 | abssubd 14411 | . 2 ⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (abs‘(𝐴 − 𝐵))) |
16 | 6, 14, 15 | 3brtr4d 4836 | 1 ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝐵 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 ℝcr 10147 0cc0 10148 ≤ cle 10287 − cmin 10478 ℑcim 14057 abscabs 14193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 |
This theorem is referenced by: cnrefiisplem 40576 |
Copyright terms: Public domain | W3C validator |