Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pthhashvtx Structured version   Visualization version   GIF version

Theorem pthhashvtx 32398
Description: A graph containing a path has at least as many vertices as there are edges in the path. (Contributed by BTernaryTau, 5-Oct-2023.)
Hypothesis
Ref Expression
pthhashvtx.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
pthhashvtx (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))

Proof of Theorem pthhashvtx
StepHypRef Expression
1 hashfz0 13791 . . . 4 (((♯‘𝐹) − 1) ∈ ℕ0 → (♯‘(0...((♯‘𝐹) − 1))) = (((♯‘𝐹) − 1) + 1))
2 pthiswlk 27506 . . . . . 6 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 wlkcl 27395 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
42, 3syl 17 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
5 nn0cn 11905 . . . . 5 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
6 npcan1 11062 . . . . 5 ((♯‘𝐹) ∈ ℂ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
74, 5, 63syl 18 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
81, 7sylan9eqr 2877 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘(0...((♯‘𝐹) − 1))) = (♯‘𝐹))
9 pthhashvtx.1 . . . . . . . 8 𝑉 = (Vtx‘𝐺)
109wlkp 27396 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
112, 10syl 17 . . . . . 6 (𝐹(Paths‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
1211ffnd 6512 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝑃 Fn (0...(♯‘𝐹)))
13 fzfi 13338 . . . . 5 (0...((♯‘𝐹) − 1)) ∈ Fin
14 resfnfinfin 8801 . . . . 5 ((𝑃 Fn (0...(♯‘𝐹)) ∧ (0...((♯‘𝐹) − 1)) ∈ Fin) → (𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin)
1512, 13, 14sylancl 588 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin)
16 simpr 487 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → ((♯‘𝐹) − 1) ∈ ℕ0)
17 fzssp1 12948 . . . . . . . 8 (0...((♯‘𝐹) − 1)) ⊆ (0...(((♯‘𝐹) − 1) + 1))
187oveq2d 7169 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (0...(((♯‘𝐹) − 1) + 1)) = (0...(♯‘𝐹)))
1917, 18sseqtrid 4016 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → (0...((♯‘𝐹) − 1)) ⊆ (0...(♯‘𝐹)))
2011, 19fssresd 6542 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))⟶𝑉)
2120adantr 483 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))⟶𝑉)
22 fz1ssfz0 13001 . . . . . . . . 9 (1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1))
2322a1i 11 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)))
2420, 23fssresd 6542 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))⟶𝑉)
25 ispth 27502 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2625simp2bi 1141 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
27 nn0z 12003 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
28 fzoval 13037 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℤ → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
2927, 28syl 17 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
304, 29syl 17 . . . . . . . . . . . 12 (𝐹(Paths‘𝐺)𝑃 → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
3130reseq2d 5850 . . . . . . . . . . 11 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1..^(♯‘𝐹))) = (𝑃 ↾ (1...((♯‘𝐹) − 1))))
32 resabs1 5880 . . . . . . . . . . . 12 ((1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))) = (𝑃 ↾ (1...((♯‘𝐹) − 1))))
3322, 32ax-mp 5 . . . . . . . . . . 11 ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))) = (𝑃 ↾ (1...((♯‘𝐹) − 1)))
3431, 33syl6eqr 2873 . . . . . . . . . 10 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1..^(♯‘𝐹))) = ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
3534cnveqd 5743 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃(𝑃 ↾ (1..^(♯‘𝐹))) = ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
3635funeqd 6374 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ↔ Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1)))))
3726, 36mpbid 234 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
38 df-f1 6357 . . . . . . 7 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉 ↔ (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))⟶𝑉 ∧ Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1)))))
3924, 37, 38sylanbrc 585 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉)
4039adantr 483 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉)
41 snsspr1 4744 . . . . . . . 8 {0} ⊆ {0, (♯‘𝐹)}
42 imass2 5962 . . . . . . . 8 ({0} ⊆ {0, (♯‘𝐹)} → (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}))
4341, 42ax-mp 5 . . . . . . 7 (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})
44 0elfz 13002 . . . . . . . . 9 (((♯‘𝐹) − 1) ∈ ℕ0 → 0 ∈ (0...((♯‘𝐹) − 1)))
4544snssd 4739 . . . . . . . 8 (((♯‘𝐹) − 1) ∈ ℕ0 → {0} ⊆ (0...((♯‘𝐹) − 1)))
46 resima2 5885 . . . . . . . 8 ({0} ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) = (𝑃 “ {0}))
47 sseq1 3989 . . . . . . . 8 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) = (𝑃 “ {0}) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ↔ (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})))
4845, 46, 473syl 18 . . . . . . 7 (((♯‘𝐹) − 1) ∈ ℕ0 → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ↔ (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})))
4943, 48mpbiri 260 . . . . . 6 (((♯‘𝐹) − 1) ∈ ℕ0 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}))
5030imaeq2d 5926 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (𝑃 “ (1..^(♯‘𝐹))) = (𝑃 “ (1...((♯‘𝐹) − 1))))
51 resima2 5885 . . . . . . . . . 10 ((1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1...((♯‘𝐹) − 1))))
5222, 51ax-mp 5 . . . . . . . . 9 ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1...((♯‘𝐹) − 1)))
5350, 52syl6reqr 2874 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1..^(♯‘𝐹))))
5453ineq2d 4186 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))))
5525simp3bi 1142 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)
5654, 55eqtrd 2855 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
57 ssdisj 4406 . . . . . 6 ((((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
5849, 56, 57syl2anr 598 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
5916, 21, 40, 58f1resfz0f1d 32385 . . . 4 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉)
609fvexi 6681 . . . . 5 𝑉 ∈ V
61 hashf1dmcdm 32380 . . . . 5 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin ∧ 𝑉 ∈ V ∧ (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
6260, 61mp3an2 1444 . . . 4 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin ∧ (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
6315, 59, 62syl2an2r 683 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
648, 63eqbrtrrd 5087 . 2 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) ≤ (♯‘𝑉))
65 0nn0m1nnn0 32375 . . . . 5 ((♯‘𝐹) = 0 ↔ ((♯‘𝐹) ∈ ℕ0 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0))
6665biimpri 230 . . . 4 (((♯‘𝐹) ∈ ℕ0 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) = 0)
674, 66sylan 582 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) = 0)
68 hashge0 13746 . . . 4 (𝑉 ∈ V → 0 ≤ (♯‘𝑉))
6960, 68ax-mp 5 . . 3 0 ≤ (♯‘𝑉)
7067, 69eqbrtrdi 5102 . 2 ((𝐹(Paths‘𝐺)𝑃 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) ≤ (♯‘𝑉))
7164, 70pm2.61dan 811 1 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  Vcvv 3493  cin 3932  wss 3933  c0 4288  {csn 4564  {cpr 4566   class class class wbr 5063  ccnv 5551  cres 5554  cima 5555  Fun wfun 6346   Fn wfn 6347  wf 6348  1-1wf1 6349  cfv 6352  (class class class)co 7153  Fincfn 8506  cc 10532  0cc0 10534  1c1 10535   + caddc 10537  cle 10673  cmin 10867  0cn0 11895  cz 11979  ...cfz 12890  ..^cfzo 13031  chash 13688  Vtxcvtx 26779  Walkscwlks 27376  Trailsctrls 27470  Pathscpths 27491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-dju 9327  df-card 9365  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-nn 11636  df-2 11698  df-n0 11896  df-xnn0 11966  df-z 11980  df-uz 12242  df-fz 12891  df-fzo 13032  df-hash 13689  df-word 13860  df-wlks 27379  df-trls 27472  df-pths 27495
This theorem is referenced by:  usgrcyclgt2v  32402  acycgr1v  32420
  Copyright terms: Public domain W3C validator